scholarly journals The relationship between air pollutants and COVID-19 cases and its implications for air quality in Jakarta, Indonesia

Author(s):  
Muhammad Rendana ◽  
Leily Nurul Komariah

World Health Organization (WHO) has announced that COVID-19 as a global pandemic and public health emergency. Previous studies have revealed that COVID-19 was an infectious disease and it could remain viable in ambient air for hours. Therefore, this study aims to examine the correlation between air pollutants (PM2.5, PM10, CO, SO2, NO2 and O3) and COVID-19 spread in Jakarta, Indonesia. Furthermore, this study also evaluates the impact of large-scale social restriction (LSSR) on air pollution index (API). Result of study found that air pollution index of PM2.5, PM10, CO, SO2 and NO2 decreased by 9.48%, 15.74%, 29.17%, 6.26% and 18.34% during LSSR period. While, for O3 showed an increase by 4.06%. Another result also found significantly positive correlations of SO2, CO and PM2.5 with COVID-19 cases. An exposure to SO2, CO and PM2.5 has driven the area become vulnerable for COVID-19 infection. Our findings indicated that the relationship between air pollutants and COVID-19 spread could provide a new notion for precaution and control method of COVID-19 outbreak.

2021 ◽  
Vol 37 (1) ◽  
pp. 194-203
Author(s):  
SS Kalikinkar Mahanta ◽  
Sharada Shrinivas Patil ◽  
Bhagirathi Mahanta ◽  
Kushalindu Biswas ◽  
Rojalin Sahu ◽  
...  

The study of various air pollutants and meteorological parameters are very important for all the researchers. Baleswar was known to be a seaside Districts of Odisha which is the economic and cultural heart of Northern Odisha. The aim of this study is to measure the air pollutants, meteorological parameters and to enumerate the air pollution index at three specific sites (Sahadevkhunta, Mallikashpur, Rasalpur) according to CPCB procedures. The air pollutants analysed by supplying through specific absorbing reagents and the pollutants were analysed up to 3 year (2017, 2018 and 2019) with a regularity of thrice per week. Analyses of our data sets showing that SO2 and NO2 concentration during summer, rainy and winter season are within the prescribe standard of NAAQS by CPCB but PM10 and PM2.5 are above the prescribed standard except PM2.5 concentration of rainy season in year 2019. Air pollution index is remaining in the condition between clean air (CA) to moderate air pollution (MAP) and it shows that the pollution index in all the sites are reducing from the year 2017 to 2019 may be due to enhancing technologies to reduce the pollutant concentration in air.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Zhang ◽  
Yujie Meng ◽  
Hejia Song ◽  
Ran Niu ◽  
Yu Wang ◽  
...  

Abstract Background Although exposure to air pollution has been linked to many health issues, few studies have quantified the modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo, China. Methods The data of daily incidence of influenza and the relevant meteorological data and air pollution data in Ningbo from 2014 to 2017 were retrieved. Low, medium and high temperature layers were stratified by the daily mean temperature with 25th and 75th percentiles. The potential modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo was investigated through analyzing the effects of air pollutants stratified by temperature stratum using distributed lag non-linear model (DLNM). Stratified analysis by sex and age were also conducted. Results Overall, a 10 μg/m3 increment of O3, PM2.5, PM10 and NO2 could increase the incidence risk of influenza with the cumulative relative risk of 1.028 (95% CI 1.007, 1.050), 1.061 (95% CI 1.004, 1.122), 1.043 (95% CI 1.003, 1.085), and 1.118 (95% CI 1.028, 1.216), respectively. Male and aged 7–17 years were more sensitive to air pollutants. Through the temperature stratification analysis, we found that temperature could modify the impacts of air pollution on daily incidence of influenza with high temperature exacerbating the impact of air pollutants. At high temperature layer, male and the groups aged 0–6 years and 18–64 years were more sensitive to air pollution. Conclusion Temperature modified the relationship between air pollution and daily incidence of influenza and high temperature would exacerbate the effects of air pollutants in Ningbo.


2021 ◽  
Vol 13 (23) ◽  
pp. 13252
Author(s):  
Sanaullah Panezai ◽  
Ubaid Ali ◽  
Alam Zeb ◽  
Muhammad Rafiq ◽  
Ayat Ullah ◽  
...  

Air pollution is among the major causes of death and disease all around the globe. The prime impact of ambient air pollution is on the lungs through the respiratory system. This study aims to estimate the health cost due to air pollution from a Sugar Mill in the Mardan district of Khyber Pakhtunkhwa, Pakistan. To determine the impact of pollution on respiratory illness, primary data were collected from 1141 individuals from 200 households living within a 3 km radius of the mill. The Household Production Method was used to drive the reduced-form Dose–Response Function and the Mitigation Cost Function for assessing the impact of pollution on health and then estimating the monetary cost associated with mitigating such illnesses. The results indicate that about 60% of the respondents living in the surrounding area of the mill suffered from different respiratory illnesses. The study estimates that by reducing the suspended particulate matter (SPM) level by 50%, the expected annual welfare gains to an individual living within a 3 km radius of the mill are US $20.21. The whole community residing within a 3 km radius of the mill will enjoy an estimated welfare gain of PKR. 70.67 million (US $0.511 million). If the pollution standard limits prescribed by the World Health Organization are followed, the expected monetary benefits to all the individuals living within a 3 km radius of the mill are PKR. 114.48 million (US $0.27 million) annually.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 750
Author(s):  
Hoang Ngoc Khue Vu ◽  
Quang Phuc Ha ◽  
Duc Hiep Nguyen ◽  
Thi Thu Thuy Nguyen ◽  
Thoai Tam Nguyen ◽  
...  

Along with its rapid urban development, Ho Chi Minh City (HCMC) in recent years has suffered a high concentration of air pollutants, especially fine particulate matters or PM2.5. A comprehensive study is required to evaluate the air quality conditions and their health impact in this city. Given the lack of adequate air quality monitoring data over a large area of the size of HCMC, an air quality modeling methodology is adopted to address the requirement. Here, by utilizing a corresponding emission inventory in combination with The Air Pollution Model-Chemical Transport Model (TAPM-CTM), the predicted concentration of air pollutants is first obtained for PM2.5, NOx, and SO2. Then by associating the pollutants exposed with the mortality rate from three causes, namely Ischemic Heart Disease (IHD), cardiopulmonary, and lung cancer, the impact of air pollution on human health is obtained for this purpose. Spatial distribution has shown a high amount of pollutants concentrated in the central city with a high density of combustion vehicles (motorcycles and automobiles). In addition, a significant amount of emissions can be observed from stevedoring and harbor activities, including ferries and cargo handling equipment located along the river. Other sources such as household activities also contribute to an even distribution of emission across the city. The results of air quality modeling showed that the annual average concentrations of NO2 were higher than the standard of Vietnam National Technical Regulation on Ambient Air Quality (QCVN 05: 2013 40 µg/m3) and World Health Organization (WHO) (40 µg/m3). The annual average concentrations of PM2.5 were 23 µg/m3 and were also much higher than the WHO (10 µg/m3) standard by about 2.3 times. In terms of public health impacts, PM2.5 was found to be responsible for about 1136 deaths, while the number of mortalities from exposure to NO2 and SO2 was 172 and 89 deaths, respectively. These figures demand some stringent measures from the authorities to potentially remedy the alarming situation of air pollution in HCM City.


2019 ◽  
Vol 34 (2) ◽  
pp. 211-218
Author(s):  
Toluwanimi Mobolade Oni ◽  
Godson R.E.E. Ana

Abstract Background There is an increasing range of adverse health effects associated with air pollution at very low concentrations. Few studies have assessed respiratory parameters among filling station attendants. Objectives This study assessed air pollutants; particulate matter (PM10) and total volatile organic compounds (TVOC) concentrations at filling stations as well as determined forced expiratory volume in one second (FEV1) and peak expiratory flow rate (PEFR) levels among filling station attendants. Methods A cross-sectional study was conducted to assess PM10 and TVOC concentrations at 20 systematically selected filling stations in Ibadan North Local Government Area, Ibadan for 2 months using a Thermo Scientific pDR 1500 PM10 monitor and SF2000-TVOC meter. FEV1 and PEFR levels were measured in order to assess the effect of exposure to PM10 and TVOC on lung function of 100 filling station attendants using a PIKO-1 Electronic peakflow/FEV1 meter. Results Total mean PM10 concentrations (μg/m3) in the morning (43.7±16.5) and afternoon (27.8±7.9) were significantly lower (p<0.01) than the World Health Organization (WHO) guideline limit (50 μg/m3). Total mean TVOC concentrations (ppm) in the morning (12.0±3.4) and afternoon (5.6±2.4) were however significantly higher (p<0.01) than the Occupational Safety and Health Administration (OSHA) guideline limit (3 ppm). Mean FEV1 for filling station attendants was 1.63±0.39 and PEFR was 171.7±45.9. Conclusion Filling stations are hotspots for the emission of VOCs and PM10. However, filling station attendants in this study are at risk of exposure to high concentrations of VOCs but not PM10. FEV1 and PEFR values among filling station attendants were very low which could possibly be attributed to extended exposure to air pollutants. Regular medical examinations should also be conducted on filling station attendants in order to aid early detection of deviations in their health status.


PLoS Medicine ◽  
2021 ◽  
Vol 18 (8) ◽  
pp. e1003767
Author(s):  
Xiang Li ◽  
Mengying Wang ◽  
Yongze Song ◽  
Hao Ma ◽  
Tao Zhou ◽  
...  

Background Air pollution has been related to incidence of type 2 diabetes (T2D). We assessed the joint association of various air pollutants with the risk of T2D and examined potential modification by obesity status and genetic susceptibility on the relationship. Methods and findings A total of 449,006 participants from UK Biobank free of T2D at baseline were included. Of all the study population, 90.9% were white and 45.7% were male. The participants had a mean age of 56.6 (SD 8.1) years old and a mean body mass index (BMI) of 27.4 (SD 4.8) kg/m2. Ambient air pollutants, including particulate matter (PM) with diameters ≤2.5 μm (PM2.5), between 2.5 μm and 10 μm (PM2.5–10), nitrogen oxide (NO2), and nitric oxide (NO) were measured. An air pollution score was created to assess the joint exposure to the 4 air pollutants. During a median of 11 years follow-up, we documented 18,239 incident T2D cases. The air pollution score was significantly associated with a higher risk of T2D. Compared to the lowest quintile of air pollution score, the hazard ratio (HR) (95% confidence interval [CI]) for T2D was 1.05 (0.99 to 1.10, p = 0.11), 1.06 (1.00 to 1.11, p = 0.051), 1.09 (1.03 to 1.15, p = 0.002), and 1.12 (1.06 to 1.19, p < 0.001) for the second to fifth quintile, respectively, after adjustment for sociodemographic characteristics, lifestyle factors, genetic factors, and other covariates. In addition, we found a significant interaction between the air pollution score and obesity status on the risk of T2D (p-interaction < 0.001). The observed association was more pronounced among overweight and obese participants than in the normal-weight people. Genetic risk score (GRS) for T2D or obesity did not modify the relationship between air pollution and risk of T2D. Key study limitations include unavailable data on other potential T2D-related air pollutants and single-time measurement on air pollutants. Conclusions We found that various air pollutants PM2.5, PM2.5–10, NO2, and NO, individually or jointly, were associated with an increased risk of T2D in the population. The stratified analyses indicate that such associations were more strongly associated with T2D risk among those with higher adiposity.


2020 ◽  
pp. 1420326X2098010
Author(s):  
Yanlin Liu ◽  
Chan Lu ◽  
Miaomiao Deng ◽  
Dan Norbäck ◽  
Shujie Sun

To investigate the role of different pattern of ambient air pollutants exposure during early life on childhood pneumonia, we conducted a retrospective cohort study of 3226 preschool children aged three to six years in Shenzhen, China during 2015 to 2016. Each child's exposure to three main air pollutants (PM10, SO2 and NO2) was calculated by the inverse distance weighted method. Multiple logistic regression analysis was used to investigate the pneumonia risk of early life exposure to air pollution. A relatively high prevalence of pneumonia (24.3%) among preschool children in Shenzhen was significantly associated with exposure to PM10 and SO2 during the first year of life, with adjusted odds ratios = 1.24 (1.05, 1.46) and 1.20 (1.05, 1.38) respectively. However, we observed no relationship between NO2 exposure and childhood pneumonia in pregnancy and first year of life. Sensitivity analysis suggested that boys, younger children (three to four years), non-preterm children, children without parental atopy and with exposure to environmental tobacco smoke were more susceptible to the impact of exposure to PM10 and SO2 on their suffering of pneumonia during their first year of life. Early-postnatal exposure to classical air pollution at low concentration during the first year of life can have an important role in enhancing the risk of childhood pneumonia, especially with the sensitive population.


2021 ◽  
pp. 194589242199365
Author(s):  
Tirth R. Patel ◽  
Bobby A. Tajudeen ◽  
Hannah Brown ◽  
Paolo Gattuso ◽  
Phillip LoSavio ◽  
...  

Background Ambient air pollution is well known to cause inflammatory change in respiratory epithelium and is associated with exacerbations of inflammatory conditions such as asthma and chronic obstructive pulmonary disease. However, limited work has been done on the impact of air pollution on pathogenesis of chronic rhinosinusitis and there are no reports in the literature of how pollutant exposure may impact sinonasal histopathology in patients with chronic rhinosinusitis. Objective This study aims to identify associations between certain histopathologic characteristics seen in sinus tissue of patients with chronic rhinosinusitis (CRS) and levels of particulate air pollution (PM2.5) and ground-level ozone in their place of residence. Methods A structured histopathology report was created to characterize the tissues of CRS patients undergoing sinus surgery. An estimate for each patient’s exposure to air pollutants including small particulate matter (PM2.5) and ground-level ozone was obtained using the Environmental Protection Agency’s (EPA) Environmental Justice Screening and Mapping Tool (EJSCREEN). Mean pollutant exposures for patients whose tissues exhibited varying histopathologic features were compared using logistic regression models. Results Data from 291 CRS patients were analyzed. Higher degree of inflammation was significantly associated with increased ozone exposure (p = 0.031). Amongst the patients with CRSwNP (n=131), presence of eosinophilic aggregates (p = 0.018) and Charcot-Leyden crystals (p = 0.036) was associated with increased ozone exposure. Conclusion Exposure to ambient air pollutants may contribute to pathogenesis of CRS. Increasing ozone exposure was linked to both higher tissue inflammation and presence of eosinophilic aggregates and Charcot-Leyden crystals in CRSwNP patients.


2021 ◽  
Vol 13 (19) ◽  
pp. 10972
Author(s):  
Wei Zhang ◽  
Ziqiang Liu ◽  
Yujie Zhang ◽  
Elly Yaluk ◽  
Li Li

Air pollution has a significant impact on tourism; however, research in this area is still limited. In this study, we applied grey relational analysis to panel data from 31 provinces in China and evaluated the relationship between air quality and inbound tourist arrivals. The study focused on provincial-level disparities for the different key air quality evaluation standards during 2009–2012 and 2013–2019. For instance, we considered PM10, SO2, NO2 and the excellent and good ratings of Air Pollution Index (API) during 2009–2012 and the additional PM2.5, CO, O3 and the excellent and good ratings of Air Quality Index (AQI) from 2013 to 2019. Results indicate that: (1) Inbound tourist arrivals are significantly and positively affected by ambient air quality, and the impact from 2013 to 2019 was greater than that from 2009 to 2012; (2) there is regional diversity in inbound tourist arrivals, and the impact of the different air quality indicators varies; (3) inbound tourists showed greater sensitivity to air pollution under the AQI standard; (4) the impact of air quality indicators on the inbound tourist arrivals shows grey relational order, and the concentration of PM2.5, PM10 and SO2 have less impact than NO2, CO and O3 on changes in tourism numbers; (5) consistency in the air quality impact on foreign tourists and compatriot tourists from HK, MO and TW varies by air quality indicators. This study highlights the need for appropriate measures to improve air quality for high-quality and sustainable development of inbound tourism.


Sign in / Sign up

Export Citation Format

Share Document