scholarly journals The modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo, China

2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Rui Zhang ◽  
Yujie Meng ◽  
Hejia Song ◽  
Ran Niu ◽  
Yu Wang ◽  
...  

Abstract Background Although exposure to air pollution has been linked to many health issues, few studies have quantified the modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo, China. Methods The data of daily incidence of influenza and the relevant meteorological data and air pollution data in Ningbo from 2014 to 2017 were retrieved. Low, medium and high temperature layers were stratified by the daily mean temperature with 25th and 75th percentiles. The potential modification effect of temperature on the relationship between air pollutants and daily incidence of influenza in Ningbo was investigated through analyzing the effects of air pollutants stratified by temperature stratum using distributed lag non-linear model (DLNM). Stratified analysis by sex and age were also conducted. Results Overall, a 10 μg/m3 increment of O3, PM2.5, PM10 and NO2 could increase the incidence risk of influenza with the cumulative relative risk of 1.028 (95% CI 1.007, 1.050), 1.061 (95% CI 1.004, 1.122), 1.043 (95% CI 1.003, 1.085), and 1.118 (95% CI 1.028, 1.216), respectively. Male and aged 7–17 years were more sensitive to air pollutants. Through the temperature stratification analysis, we found that temperature could modify the impacts of air pollution on daily incidence of influenza with high temperature exacerbating the impact of air pollutants. At high temperature layer, male and the groups aged 0–6 years and 18–64 years were more sensitive to air pollution. Conclusion Temperature modified the relationship between air pollution and daily incidence of influenza and high temperature would exacerbate the effects of air pollutants in Ningbo.

2020 ◽  
Author(s):  
Desheng Zhao ◽  
Jian Cheng ◽  
Ping Bao ◽  
Yanwu Zhang ◽  
Fengjuan Liang ◽  
...  

Abstract Background Current findings on the impact of weather conditions on osteoarthritis (OA) and rheumatoid arthritis (RA) are sparse and not conclusive. This study aimed to investigate the relationship between temperature change and OA/RA admission. Methods Daily OA/RA admission and meteorological data from 1 January 2014 to 31 December 2017 in Hefei, China, were collected. We quantified the relationship between ambient temperature and OA/RA admission using a distributed lag nonlinear model (DLNM). The effect modifications by gender and age were also examined. Results Sudden temperature decrease was significantly associated with RA admission (25th percentile of temperature versus 50th percentile of temperature), with the acute and largest effect at current days lag (RR: 1.063, 95%CI: 1.010–1.118). However, no association between temperature and OA admission was observed. When conducting subgroup analyses by individual characteristics, we found that females and patients aged 41–65 years were more vulnerable to temperature decrease than males, patients aged 0–40 and ≧ 66 years, respectively. Conclusions This study suggested that sudden temperature decrease was a risk factor for increase RA admission. Females and patients aged 41–65 years were particularly vulnerable to the effect of temperature decrease.


2021 ◽  
Vol 11 (8) ◽  
pp. 819
Author(s):  
Da-Wei Wu ◽  
Szu-Chia Chen ◽  
Hung-Pin Tu ◽  
Chih-Wen Wang ◽  
Chih-Hsing Hung ◽  
...  

Previous studies have suggested an association between air pollution and lung disease. However, few studies have explored the relationship between chronic lung diseases classified by lung function and environmental parameters. This study aimed to comprehensively investigate the relationship between chronic lung diseases, air pollution, meteorological factors, and anthropometric indices. We conducted a cross-sectional study using the Taiwan Biobank and the Taiwan Air Quality Monitoring Database. A total of 2889 participants were included. We found a V/U-shaped relationship between temperature and air pollutants, with significant effects at both high and low temperatures. In addition, at lower temperatures (<24.6 °C), air pollutants including carbon monoxide (CO) (adjusted OR (aOR):1.78/Log 1 ppb, 95% CI 0.98–3.25; aOR:5.35/Log 1 ppb, 95% CI 2.88–9.94), nitrogen monoxide (NO) (aOR:1.05/ppm, 95% CI 1.01–1.09; aOR:1.11/ppm, 95% CI 1.07–1.15), nitrogen oxides (NOx) (aOR:1.02/ppm, 95% CI 1.00–1.05; aOR:1.06/ppm, 95% CI 1.04–1.08), and sulfur dioxide (SO2) (aOR:1.29/ppm, 95% CI 1.01–1.65; aOR:1.77/ppm, 95% CI 1.36–2.30) were associated with restrictive and mixed lung diseases, respectively. Exposure to CO, NO, NO2, NOx and SO2 significantly affected obstructive and mixed lung disease in southern Taiwan. In conclusion, temperature and air pollution should be considered together when evaluating the impact on chronic lung diseases.


2020 ◽  
Author(s):  
Yichen Chen ◽  
Xiaopan Li ◽  
Hanyi Chen ◽  
Lianghong Sun ◽  
Tao Lin ◽  
...  

Abstract Background: Air pollution is a severe and dangerous public health problem. However, the effect of ambient gaseous air pollution exposure on years of life lost (YLL) attributable to chronic obstructive pulmonary disease (COPD) mortality has not been quantitatively verified.Methods: We collected the data of 12,781 COPD deaths and ambient gaseous air pollutants, including sulfur dioxide (SO2), nitrogen dioxide (NO2), Carbon monoxide (CO), and ozone (O3), during the years 2013-2019 in the Shanghai Pudong New Area (PNA). Then we performed a time-stratified case-crossover study combined with a distributed lag nonlinear model (DLNM) to estimate the impact of those air pollutants on daily COPD deaths counts and YLL. The confounders including long-term trend and meteorological factors have been controlled for, and effects of age and educational attainment as effect modifiers have also been evaluated.Results: During the 2013-2019 time frame, increases of 10μg/m3 in SO2 and NO2 were associated with a 4.93% (95% CI: 1.47%, 8.50%) and 1.47% (95% CI: 0.14%, 2.82%) in daily COPD death counts at lag0-1day, respectively, a 2.52 (95% CI: 0.31, 4.72) YLL increase and 0.85 (95% CI: 0.01, 1.68) YLL increase at lag0-1day, respectively. A 1mg/m3 increase in CO was associated with a 9.46% (95% CI: 0.40%, 19.35%) at lag0 increase in daily COPD death counts. No significant impact from O3 on both daily COPD deaths counts and YLL (P>0.05). The impact of gaseous air pollutants on the daily COPD death count and YLL were significant in populations of older adults and the lower educated population, while an insignificant effect was observed in the younger population and higher educated population. The YLL due to COPD related to SO2 and CO for the lower educated population was significantly higher than those for the higher educated population.Conclusion: Reducing specific gaseous air pollutants will help to control COPD deaths and improve the population’s life expectancy.


2017 ◽  
Vol 103 (9) ◽  
pp. 828-831 ◽  
Author(s):  
Naïm Bouazza ◽  
Frantz Foissac ◽  
Saik Urien ◽  
Romain Guedj ◽  
Ricardo Carbajal ◽  
...  

ObjectiveAs the results from epidemiological studies about the impact of outdoor air pollution on asthma in children are heterogeneous, our objective was to investigate the association between asthma exacerbation in children and exposure to air pollutants.MethodsA database of 1 264 585 paediatric visits during the 2010–2015 period to the emergency rooms from 20 emergency departments (EDs) of ‘Assistance Publique Hôpitaux de Paris (APHP)’, the largest hospital group in Europe, was used. A total of 47 107 visits were classified as asthma exacerbations. Concentration of air pollutants (nitrogen dioxide, ozone, fine particulate matter (PM) with an aerodynamic diameter smaller than 10  µm (PM10) and 2.5 µm (PM2.5)), as well as meteorological data, evolution of respiratory syncytial virus infection and pollen exposition, were collected on an hourly or daily basis for the same period using institutional databases. To assess the association between air pollution and asthma, mixed-effects quasi-Poisson regression modelling was performed.ResultsThe only compound independently associated with ED visits for asthma was PM2.5 (P<10−4). The association between asthma exacerbation and PM2.5 was not linear, and a sigmoid function described the relationshipsatisfactorily. PM2.5 concentration, which gives half the maximum effect, was estimated at 13.5 µg/m3.ConclusionsWe found an association between daily asthma exacerbation in paediatric visits to the ED and fine particulate air pollutants.


Atmosphere ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1628
Author(s):  
Houli Zhang ◽  
Shibing You ◽  
Miao Zhang ◽  
Difei Liu ◽  
Xuyan Wang ◽  
...  

The impact of air pollution on human health is becoming increasingly severe, and economic losses are a significant impediment to economic and social development. This paper investigates the impact of air pollutants on the respiratory system and its action mechanism by using information on inpatients with respiratory diseases from two IIIA (highest) hospitals in Wuhan from 2015 to 2019, information on air pollutants, and meteorological data, as well as relevant demographic and economic data in China. This paper describes the specific conditions of air pollutant concentrations and respiratory diseases, quantifies the degree of correlation between the two, and then provides a more comprehensive assessment of the economic losses using descriptive statistical methods, the generalized additive model (GAM), cost of illness approach (COI), and scenario analysis. According to the findings, the economic losses caused by PM2.5, PM10, SO2, NO2, and CO exposure are USD 103.17 million, USD 70.54 million, USD 98.02 million, USD 40.35 million, and USD 142.38 million, for a total of USD 454.46 billion, or approximately 0.20% of Wuhan’s GDP in 2019. If the government tightens control of major air pollutants and meets the WHO-recommended criterion values, the annual evitable economic losses would be approximately USD 69.4 million or approximately 0.03% of Wuhan’s GDP in 2019. As a result, the relevant government departments must strengthen air pollution control to mitigate the impact of air pollution on population health and the associated economic losses.


2021 ◽  
Vol 31 (3) ◽  
pp. 154-163
Author(s):  
MA Mondol ◽  
M Hossain ◽  
S Sultana ◽  
MA Islam ◽  
P Biswas

The present study was conducted to investigate the impact of air pollution in some selected areas of Mymensingh city. The relationship between independent variables (age, educational qualification, family size and communication exposure) with the basic idea and impact of air pollution (dependent variable) was investigated in this study. To conduct the study, two hundred (200) respondents were selected randomly from four study sites under Mymensingh city. Pearson's product-moment correlation coefficients were analyzed to examine the relationship between the concerned variables. The findings revealed that 87.5% people have basic idea and 12.5% people have no idea about air pollution. About half (46%) of the peoples had high impact, 34% had medium and 20% had low impact because of air pollution. Out of four independent variables, three variables such as educational qualification and communication exposure had positive and significant relationship, age had negative but significant relationship and family size had non-significant relationship with their perception and awareness of air pollution. Further assessment on different air pollutants in the study area may explore the original status of air pollution and their impact on environment as well as on livelihood. Progressive Agriculture 31 (3): 154-163, 2020


Author(s):  
Marta Czubaj-Kowal ◽  
Ryszard Kurzawa ◽  
Henryk Mazurek ◽  
Michał Sokołowski ◽  
Teresa Friediger ◽  
...  

The consequences of air pollution pose one of the most serious threats to human health, and especially impact children from large agglomerations. The measurement of nitric oxide concentration in exhaled air (FeNO) is a valuable biomarker in detecting and monitoring airway inflammation. However, only a few studies have assessed the relationship between FeNO and the level of air pollution. The study aims to estimate the concentration of FeNO in the population of children aged 8–9 attending the third grade of public primary schools in Krakow, as well as to determine the relationship between FeNO concentration and dust and gaseous air pollutants. The research included 4580 children aged 8–9 years who had two FeNO measurements in the winter–autumn and spring–summer periods. The degree of air pollution was obtained from the Regional Inspectorate of Environmental Protection in Krakow. The concentration of pollutants was obtained from three measurement stations located in different parts of the city. The FeNO results were related to air pollution parameters. The study showed weak but significant relationships between FeNO and air pollution parameters. The most significant positive correlations were found for CO8h (r = 0.1491, p < 0.001), C6H6 (r = 0.1420, p < 0.001), PM10 (r = 0.1054, p < 0.001) and PM2.5 (r = 0.1112, p < 0.001). We suggest that particulate and gaseous air pollutants impact FeNO concentration in children aged 8–9 years. More research is needed to assess the impact of air pollution on FeNO concentration in children. The results of such studies could help to explain the increase in the number of allergic and respiratory diseases seen in children in recent decades.


Author(s):  
Muhammad Rendana ◽  
Leily Nurul Komariah

World Health Organization (WHO) has announced that COVID-19 as a global pandemic and public health emergency. Previous studies have revealed that COVID-19 was an infectious disease and it could remain viable in ambient air for hours. Therefore, this study aims to examine the correlation between air pollutants (PM2.5, PM10, CO, SO2, NO2 and O3) and COVID-19 spread in Jakarta, Indonesia. Furthermore, this study also evaluates the impact of large-scale social restriction (LSSR) on air pollution index (API). Result of study found that air pollution index of PM2.5, PM10, CO, SO2 and NO2 decreased by 9.48%, 15.74%, 29.17%, 6.26% and 18.34% during LSSR period. While, for O3 showed an increase by 4.06%. Another result also found significantly positive correlations of SO2, CO and PM2.5 with COVID-19 cases. An exposure to SO2, CO and PM2.5 has driven the area become vulnerable for COVID-19 infection. Our findings indicated that the relationship between air pollutants and COVID-19 spread could provide a new notion for precaution and control method of COVID-19 outbreak.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Huangtai Miao ◽  
Xiaoying Li ◽  
Xiao Wang ◽  
Shaoping Nie

Abstract Objectives Air pollution can lead to many cardiovascular and respiratory diseases, but the impact of air pollution on pulmonary embolism is still uncertain. We conducted a meta-analysis to assess the relationship between air pollution and pulmonary embolism. Content We searched PubMed, EMBASE, Web of Science, and the Cochran Library for citations on air pollutants (carbon monoxide, sulfur dioxide, nitrogen dioxide, ozone and particulate matter) and pulmonary embolism. A total of nine citations met the inclusion criteria. There is no evidence of bias. CO, SO2, PM10 and PM2.5 had no significant effect on the occurrence of pulmonary embolism. NO2 and O3 can increase the risk of pulmonary embolism to a small extent. Summary This meta-analysis suggests that some air pollutants are associated with an increased risk of pulmonary embolism. Outlook Reducing air pollution and improving air quality can effectively reduce the risk of pulmonary embolism.


2021 ◽  
Author(s):  
Siwen Ding ◽  
Shu Sun ◽  
Rui Ding ◽  
Shasha Song ◽  
Yi Cao ◽  
...  

Abstract Background The topic of inflammatory bowel disease (IBD) has attracted more and more attentions. Accumulating evidence suggests that exposure to air pollutants is associated with IBD, yet the results are inconsistent and study about daily exposure is few. This study evaluated the association between daily air pollution and IBD in Hefei, China. Methods Daily IBD admission data were obtained from two hospitals in Hefei from January 1, 2019 to December 31, 2019. Daily concentrations of major air pollutants were provided by the Hefei Environmental Protection Bureau. Meteorological data were collected from China Meteorological Data Network. Distributed lag nonlinear model (DLNM) considering both the lag effects of exposure factors and nonlinear relationship of exposure-reaction was used to assess the effect of daily air pollutants exposure on IBD admission. Results During the study period, totally 886 cases of IBD were recruited, including 313 cases of ulcerative colitis (UC) and 573 cases of Crohn's disease (CD). The findings showed PM2.5, O3 and CO exposure significantly increased the risk of IBD. Mean concentrations of PM2.5, O3 and CO in Hefei were 43.85ug/m³, 100.78ug/m³, and 0.76mg/m³, respectively. Each increase of 10mg/m³ in PM2.5/ O3 and 0.1mg/m³ in CO increased the risk of IBD. The strongest effects of these three pollutants on IBD were observed in lag2-lag3 (RR = 1.037, 95% CI: 1.005–1.070%), lag3 (RR = 1.020, 95% CI: 1.002–1.038%) and lag2 (RR = 1.036, 95% CI: 1.003–1.071%), respectively. In warm seasons, PM2.5, O3 and CO had a stronger effect increased the risk of IBD, which were observed in lag2 (RR = 1.104, 95% CI: 1.032–1.181%), lag2 and lag5 (RR = 1.023, 95% CI: 1.002–1.044%; RR = 1.036, 95% CI: 1.004–1.069%) and lag2 (RR = 1.071, 95% CI: 1.012–1.133%), respectively. Conclusions Air pollutants (PM2.5, O3 and CO) exposure could increase the risk of IBD, while the most susceptibility seasons for the exposure were mainly in warm seasons. This study contributes to the knowledge of the association between air pollution and IBD, but the associations need to be verified by further studies.


Sign in / Sign up

Export Citation Format

Share Document