Pemodelan Produksi Ayam Ras di Indonesia Menggunakan Regresi dengan Sisaan Deret Waktu

2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Akhbamah Primadaniyah Febrin ◽  
Itasia Dina Sulvianti ◽  
Aji Hamim Wigena

The production of broiler chicken has fluctuated in recent years and many factors alleged to influence the production. The purpose of this study is modeling a structural equation of forecasting the production of broiler chicken. The study use a dependent variable (Y) that is production of broiler chickens (kilo ton) and five independent variables (X) consist of broiler chicken population (million), national chicken consumption (ton/year), retail price (Rp/kg), real price of corn (Rp), and real price of Kampung chicken (Rp). The variables are time series data with errors does not spread out randomly. Modeling method used and suitable to the conditions is regression with time series errors  combined with ARIMA (Autoregressive Integrated Moving Average). The results of the regression analysis showed that only population variable and retail price variable are influencing the production of broiler chicken in Indonesia. Those two independent variables then modeled by a dependent variable using regression with time series errors. The best modeling is regression with time series errors ARIMA(1,1,0) with MAPE (Mean Average Percentage Error) value of 2.4%, RMSE (Root Mean Square Error) value of 39.800, and correlation value 0.980. The results has proved that the production of broiler chicken in Indonesia is influenced by those two variables.

Entropy ◽  
2019 ◽  
Vol 21 (3) ◽  
pp. 274 ◽  
Author(s):  
Xinzheng Dong ◽  
Chang Chen ◽  
Qingshan Geng ◽  
Zhixin Cao ◽  
Xiaoyan Chen ◽  
...  

Medical devices generate huge amounts of continuous time series data. However, missing values commonly found in these data can prevent us from directly using analytic methods such as sample entropy to reveal the information contained in these data. To minimize the influence of missing points on the calculation of sample entropy, we propose a new method to handle missing values in continuous time series data. We use both experimental and simulated datasets to compare the performance (in percentage error) of our proposed method with three currently used methods: skipping the missing values, linear interpolation, and bootstrapping. Unlike the methods that involve modifying the input data, our method modifies the calculation process. This keeps the data unchanged which is less intrusive to the structure of the data. The results demonstrate that our method has a consistent lower average percentage error than other three commonly used methods in multiple common physiological signals. For missing values in common physiological signal type, different data size and generating mechanism, our method can more accurately extract the information contained in continuously monitored data than traditional methods. So it may serve as an effective tool for handling missing values and may have broad utility in analyzing sample entropy for common physiological signals. This could help develop new tools for disease diagnosis and evaluation of treatment effects.


Author(s):  
Marinus Ignasius Jawawuan Lamabelawa

For numerous purposes, time series data are analyzed to understand phenomena or behaviors of variables, and try to find future value. Interpolation is guessing time series data point between the range of data set. Extrapolation is predict or guessing time series data point from beyond the range of data set. In this study, Newton’s Extrapolation is compared with linear and squared extrapolation. Newton’s  Extrapolation making the assumption that the observed trend continues for values of x outside the model range. The robustness of prediction using Root Mean Square Error (RMSE) and Mean Average Percentage Error (MAPE). The results of newton’s interpolation with bottom, middle, and top approaches found the best value are middle approach, namely RMSE 76,01 and MAPE 4,65%.  In Newton’s Extrapolation, the error values are consistent at bottom, middle, and top approaches, namely RMSE 541,170 anda MAPE 33,19%. Based on data from the Statistics of Indonesia on the percentage and number of poor people in East Nusa Tenggara Province in 2010 -2018 is declining trend pattern. The error value with Linear, Quadratic, and Newton’s Extrapolation shows the robust value results at linear or trend extrapolation, namely RMSE 157,450 and MAPE 7,93%. These results indicate Newton's extrapolation works well on non-linear data and requires a combination method with  soft computing methods such as Fuzzy Systems, AG, or ANN


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Ari Wibisono ◽  
Petrus Mursanto ◽  
Jihan Adibah ◽  
Wendy D. W. T. Bayu ◽  
May Iffah Rizki ◽  
...  

Abstract Real-time information mining of a big dataset consisting of time series data is a very challenging task. For this purpose, we propose using the mean distance and the standard deviation to enhance the accuracy of the existing fast incremental model tree with the drift detection (FIMT-DD) algorithm. The standard FIMT-DD algorithm uses the Hoeffding bound as its splitting criterion. We propose the further use of the mean distance and standard deviation, which are used to split a tree more accurately than the standard method. We verify our proposed method using the large Traffic Demand Dataset, which consists of 4,000,000 instances; Tennet’s big wind power plant dataset, which consists of 435,268 instances; and a road weather dataset, which consists of 30,000,000 instances. The results show that our proposed FIMT-DD algorithm improves the accuracy compared to the standard method and Chernoff bound approach. The measured errors demonstrate that our approach results in a lower Mean Absolute Percentage Error (MAPE) in every stage of learning by approximately 2.49% compared with the Chernoff Bound method and 19.65% compared with the standard method.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7183 ◽  
Author(s):  
Hafiza Mamona Nazir ◽  
Ijaz Hussain ◽  
Ishfaq Ahmad ◽  
Muhammad Faisal ◽  
Ibrahim M. Almanjahie

Due to non-stationary and noise characteristics of river flow time series data, some pre-processing methods are adopted to address the multi-scale and noise complexity. In this paper, we proposed an improved framework comprising Complete Ensemble Empirical Mode Decomposition with Adaptive Noise-Empirical Bayesian Threshold (CEEMDAN-EBT). The CEEMDAN-EBT is employed to decompose non-stationary river flow time series data into Intrinsic Mode Functions (IMFs). The derived IMFs are divided into two parts; noise-dominant IMFs and noise-free IMFs. Firstly, the noise-dominant IMFs are denoised using empirical Bayesian threshold to integrate the noises and sparsities of IMFs. Secondly, the denoised IMF’s and noise free IMF’s are further used as inputs in data-driven and simple stochastic models respectively to predict the river flow time series data. Finally, the predicted IMF’s are aggregated to get the final prediction. The proposed framework is illustrated by using four rivers of the Indus Basin System. The prediction performance is compared with Mean Square Error, Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE). Our proposed method, CEEMDAN-EBT-MM, produced the smallest MAPE for all four case studies as compared with other methods. This suggests that our proposed hybrid model can be used as an efficient tool for providing the reliable prediction of non-stationary and noisy time series data to policymakers such as for planning power generation and water resource management.


Media Ekonomi ◽  
2017 ◽  
Vol 20 (1) ◽  
pp. 83
Author(s):  
Jumadin Lapopo

<p>Poverty is being a problem in all developing countries including Indonesia. Among goverment programs, poverty has become the center offattention in policy at both of the regional and national levels. Looking at thephenomenon of poverty, Islam present with solution to reduce poverty through Zakat. This study aims to analyze the effect of ZIS and Zakat Fitrah against poverty in Indonesia in 1998 until 2010, data used in this study is secondary data and uses time series data, for the dependent variabel is poverty and for independent variables are ZIS and Zakat Fitrah. The analysis tools used in this study is to use multiple regression analysis model and the assumptions of classical test using the software Eviews-4. In this study also concluded that the ZIS variables significantly affect to the reduction of poverty in Indonesia although the effect is very small. In the variable Zakat Fitrah not significantly affect poverty reduction in Indonesia because of the nature of Zakat Fitrah is for consumption and not for long-term needs. The results of this study can be used for the management of zakat to be able to develop the management and to get a better system for distribution of zakat so that the main purpose of zakat can be achieved to reduce poverty.<br />Keywords : Poverty, Zakat Fitrah, ZIS.</p>


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 612
Author(s):  
Helin Yin ◽  
Dong Jin ◽  
Yeong Hyeon Gu ◽  
Chang Jin Park ◽  
Sang Keun Han ◽  
...  

It is difficult to forecast vegetable prices because they are affected by numerous factors, such as weather and crop production, and the time-series data have strong non-linear and non-stationary characteristics. To address these issues, we propose the STL-ATTLSTM (STL-Attention-based LSTM) model, which integrates the seasonal trend decomposition using the Loess (STL) preprocessing method and attention mechanism based on long short-term memory (LSTM). The proposed STL-ATTLSTM forecasts monthly vegetable prices using various types of information, such as vegetable prices, weather information of the main production areas, and market trading volumes. The STL method decomposes time-series vegetable price data into trend, seasonality, and remainder components. It uses the remainder component by removing the trend and seasonality components. In the model training process, attention weights are assigned to all input variables; thus, the model’s prediction performance is improved by focusing on the variables that affect the prediction results. The proposed STL-ATTLSTM was applied to five crops, namely cabbage, radish, onion, hot pepper, and garlic, and its performance was compared to three benchmark models (i.e., LSTM, attention LSTM, and STL-LSTM). The performance results show that the LSTM model combined with the STL method (STL-LSTM) achieved a 12% higher prediction accuracy than the attention LSTM model that did not use the STL method and solved the prediction lag arising from high seasonality. The attention LSTM model improved the prediction accuracy by approximately 4% to 5% compared to the LSTM model. The STL-ATTLSTM model achieved the best performance, with an average root mean square error (RMSE) of 380, and an average mean absolute percentage error (MAPE) of 7%.


2020 ◽  
Vol 9 (3) ◽  
pp. 306-315
Author(s):  
Febyani Rachim ◽  
Tarno Tarno ◽  
Sugito Sugito

Import is one of the efforts of an area to meet the needs of its population in order to stabilize prices and maintain stock availability. The value of imports in Central Java throughout 2016 amounted to 8811.05 Million US Dollars. The value of imports in Central Java is the top 10 in all provinces in Indonesia with a percentage of 6.50%. Import data in Central Java is included in the time series data category. To maintain the stability of imports in Central Java, it is deemed necessary to make a plan based on a statistical model. One of the time series models that can be applied is the fuzzy time series model with the Chen method approach and the S. R. Singh method because the method is suitable for cyclical patterned data with monthly time periods such as Import data in Central Java. Important concepts in the preparation of the model are fuzzy sets, membership functions, set basic operators, fuzzy variables, universe sets and domains. The fuzzy time series modeling procedure is carried out through several stages, namely the determination of universe discourse which is divided into several intervals, then defines the fuzzy set so that it can be performed fuzzification. After that the fuzzy logical relations and fuzzy logical group relations are determined. The accuracy calculation in both methods uses symmetric Mean Absolute Percentage Error (sMAPE). In this study the sMAPE value obtained in the Fuzzy Time Series Chen method of 10.95% means that it shows good forecasting ability. While the sMAPE value on the Fuzzy Time Series method of S. R. Singh method by 5.50% shows very good forecasting ability. It can be concluded that the sMAPE value in the S. R. Singh fuzzy time series method is better than the Chen method.Keywords: Import value, fuzzy time series , Chen, S. R. Singh, sMAPE


2006 ◽  
Vol 135 (2) ◽  
pp. 245-252 ◽  
Author(s):  
W. HU ◽  
K. MENGERSEN ◽  
P. BI ◽  
S. TONG

Three conventional regression models were compared using the time-series data of the occurrence of haemorrhagic fever with renal syndrome (HFRS) and several key climatic and occupational variables collected in low-lying land, Anhui Province, China. Model I was a linear time series with normally distributed residuals; model II was a generalized linear model with Poisson-distributed residuals and a log link; and model III was a generalized additive model with the same distributional features as model II. Model I was fitted using least squares whereas models II and III were fitted using maximum likelihood. The results show that the correlations between the HFRS incidence and the independent variables measured (i.e. difference in water level, autumn crop production and density of Apodemus agrarius) ranged from −0·40 to 0·89. The HFRS incidence was positively associated with density of A. agrarius and crop production, but was inversely associated with difference in water level. The residual analyses and the examination of the accuracy of the models indicate that model III may be the most suitable in the assessment of the relationship between the incidence of HFRS and the independent variables.


2017 ◽  
Vol 145 (6) ◽  
pp. 1118-1129 ◽  
Author(s):  
K. W. WANG ◽  
C. DENG ◽  
J. P. LI ◽  
Y. Y. ZHANG ◽  
X. Y. LI ◽  
...  

SUMMARYTuberculosis (TB) affects people globally and is being reconsidered as a serious public health problem in China. Reliable forecasting is useful for the prevention and control of TB. This study proposes a hybrid model combining autoregressive integrated moving average (ARIMA) with a nonlinear autoregressive (NAR) neural network for forecasting the incidence of TB from January 2007 to March 2016. Prediction performance was compared between the hybrid model and the ARIMA model. The best-fit hybrid model was combined with an ARIMA (3,1,0) × (0,1,1)12 and NAR neural network with four delays and 12 neurons in the hidden layer. The ARIMA-NAR hybrid model, which exhibited lower mean square error, mean absolute error, and mean absolute percentage error of 0·2209, 0·1373, and 0·0406, respectively, in the modelling performance, could produce more accurate forecasting of TB incidence compared to the ARIMA model. This study shows that developing and applying the ARIMA-NAR hybrid model is an effective method to fit the linear and nonlinear patterns of time-series data, and this model could be helpful in the prevention and control of TB.


1985 ◽  
Vol 42 (1) ◽  
pp. 147-149 ◽  
Author(s):  
Carl J. Walters

Functional relationships, such as stock–recruitment curves, are generally estimated from time series data where natural "random" factors have generated both deviations from the relationship and also informative variation in the independent variables. Even in the absence of measurement errors, such natural experiments can lead to severely biased parameter estimates. For stock–recruitment models, the bias is misleading for management: the stock will appear too productive when it is low, and too unproductive when it is large. The likely magnitude of such biases can and should be determined for any particular case by Monte Carlo simulations.


Sign in / Sign up

Export Citation Format

Share Document