scholarly journals Characterization of Magnetorheological Finishing Fluid for Continuous Flow Finishing Process

2018 ◽  
Vol 11 (6) ◽  
pp. 1751-1763 ◽  
Author(s):  
S. Mangal ◽  
M. Kataria ◽  
◽  
2021 ◽  
Vol 245 ◽  
pp. 116838
Author(s):  
Wenxing Sun ◽  
Xunli Zhang ◽  
Chaoqun Yao ◽  
Qingqiang Wang ◽  
Nan Jin ◽  
...  

Author(s):  
Mayank Srivastava ◽  
Pulak M Pandey

In the present work, a novel hybrid finishing process that combines the two preferred methods in industries, namely, chemical-mechanical polishing (CMP) and magneto-rheological finishing (MRF), has been used to polish monocrystalline silicon wafers. The experiments were carried out on an indigenously developed double-disc chemical assisted magnetorheological finishing (DDCAMRF) experimental setup. The central composite design (CCD) was used to plan the experiments in order to estimate the effect of various process factors, namely polishing speed, slurry flow rate, percentage CIP concentration, and working gap on the surface roughness ([Formula: see text]) by DDCAMRF process. The analysis of variance was carried out to determine and analyze the contribution of significant factors affecting the surface roughness of polished silicon wafer. The statistical investigation revealed that percentage CIP concentration with a contribution of 30.6% has the maximum influence on the process performance followed by working gap (21.4%), slurry flow rate (14.4%), and polishing speed (1.65%). The surface roughness of polished silicon wafers was measured by the 3 D optical profilometer. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were carried out to understand the surface morphology of polished silicon wafer. It was found that the surface roughness of silicon wafer improved with the increase in polishing speed and slurry flow rate, whereas it was deteriorated with the increase in percentage CIP concentration and working gap.


2019 ◽  
Vol 144 ◽  
pp. 247-257 ◽  
Author(s):  
Haiyun Ma ◽  
Nan Jin ◽  
Peng Zhang ◽  
Yufei Zhou ◽  
Yuchao Zhao ◽  
...  

Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 517 ◽  
Author(s):  
Hamza Landari ◽  
Mourad Roudjane ◽  
Younès Messaddeq ◽  
Amine Miled

In this paper, we present a new FTIR-based microfluidic system for Glucose, Fructose and Sucrose detection. The proposed microfluidic system is based on a pseudo-continuous flow coupled to a microscope-FTIR instrument. The detection and characterization of sugar samples were performed by recording their absorption spectrum in the wavelength range 700–1000 cm − 1 of the Mid-IR region. The proposed pseudo-continuous flow system is designed to improve the uniformity of the sample distribution in the analyzed area versus conventional systems. The obtained results for different sugars concentrations, show a very low measurement error of 4.35% in the absorption peak intensity, which is ten times lower than the error obtained using the conventional measurements.


2018 ◽  
Vol 190 ◽  
pp. 11005 ◽  
Author(s):  
Marco Posdzich ◽  
Rico Stöckmann ◽  
Florian Morczinek ◽  
Matthias Putz

Burnishing is an effective chipless finishing process for improving workpiece properties: hardness, vibration resistance and surface quality. The application of this technology is limited to rotationally symmetrical structures of deformable metals. Because of the multiaxial characteristics, the transfer of this force controlled technology on to prismatic shapes requires a comprehensive process development. The main purpose of this paper is the characterization of a plain burnishing process on aluminium EN AW 2007 with a linear moved, spherical diamond tool. The method of design of experiments was used to investigate the influence of different machined surfaces in conjunction with process parameters: burnishing force, burnishing direction, path distance and burnishing speed. FEM simulation was utilized for strain and stress analysis. The experiments show, that unlike the process parameters the initial surface roughness as 3rd order shape deviation does not have a significant influence on the finished surface. Furthermore a completely new surface is created by the process, with properties independent from the initial surface roughness.


Soft Matter ◽  
2019 ◽  
Vol 15 (5) ◽  
pp. 880-889 ◽  
Author(s):  
Massimiliano M. Villone ◽  
Janine K. Nunes ◽  
Yankai Li ◽  
Howard A. Stone ◽  
Pier Luca Maffettone

A microfluidic technique recently proposed in the literature to measure the interfacial tension between a liquid droplet and an immiscible suspending liquid [Hudson et al., Appl. Phys. Lett., 2005, 87, 081905], [Cabral and Hudson, Lab Chip, 2006, 6, 427] is suitably adapted to the characterization of the elastic modulus of soft particles in a continuous-flow process.


Sign in / Sign up

Export Citation Format

Share Document