scholarly journals Comparison of Water Turbidity Removal Efficiencies of Descurainia Sophia Seed Extract and Ferric Chloride

2016 ◽  
Vol 1 (2) ◽  
pp. 118-124 ◽  
Author(s):  
Tooran Yarahmadi ◽  
Mazyar Peyda ◽  
Mehran Mohammadian Fazli ◽  
Rizan Rezaeian ◽  
Negin Soleimani ◽  
...  
2012 ◽  
Vol 610-613 ◽  
pp. 1569-1572
Author(s):  
Xiao Lei Zhao ◽  
Yue Jun Zhang ◽  
Xiao Xiao Li ◽  
Cheng Liu

The series of stable A-F/PDM composite coagulants prepared by combining polydiallyldimethylammonium chloride (PDM) with the composite (A-F) of aluminum sulfate (AS) and ferric chloride (FeCl3) were used to research the treatment effects to Taihu Lake prechlorinated algae-containing water in winter. The composite coagulants were tested by jar tests for the effects of mass percents (5%~20%) and intrinsic viscosity values (0.55~3.99dL/g) of PDM on algae- and turbidity-removal efficiencies. The results show that when the residual turbidity of supernatant after sedimentation reaches the control standard of 2 NTU, the dosages of A-F and A-F/PDM (0.55/5%~3.99/20%) are 4.52 mg/L and 4.27~2.52 mg/L respectively, and the algae-removal rates are 90.1% and 92.0%~96.3% respectively. When the dosages are 4.52 mg/L, the algae-removal rates are 90.1% and 92.5%~99.0% respectively, and the residual turbidities are 2.00 NTU and 1.76~0.60 NTU respectively. Therefore, using A-F/PDM composite coagulants can enhance evidently the treatment effect of A-F to Taihu Lake prechlorinated algae-containing water in winter.


Author(s):  
Ridwan Ridwan ◽  
Reri Afrianita ◽  
Resi Meilinta Danir Danir

Variations in the type of coagulant resulted in different floc characteristics. The sedimentation unit with continuous discharges flow or (CDF) method is a sedimentation unit that applies the leaking tank phenomenon, so it is possible that it will affect the condition of the floc that has been formed and in the end can affect the efficiency of turbidity removal. This study was to determine the effect of the type of coagulant in the coagulation unit on the removal of raw water turbidity in the sedimentation unit using the CDF method with a 6% discharge ratio to the product discharge. The raw water used is Sungai Batang Kuranji water with a turbidity of 27.63 NTU. The experimental reactor consisted of a coagulation-flocculation unit and a sedimentation unit with various coagulants being Poly Aluminum Chloride (PAC), Ferric Chloride, and Alum. The results showed that the efficiency of removing turbidity from the Sungai Batang Kuranji by PAC coagulant was 90.12%, Ferric Chloride 86.99%, and Alum 81.72%. The Spearman correlation value of the coagulant variable on the efficiency of the removal of turbidity is 0.948, indicating a unidirectional effect between the two variables. The addition of 6% CDF flow in the settling zone did not break the floc because the flow formed was still laminar.


2013 ◽  
Vol 3 (4) ◽  
pp. 549-556 ◽  
Author(s):  
Kaveh Sookhak Lari ◽  
Morteza Kargar

High-rate lamella settlers in clarifiers and triple media filters have been implemented in Isfahan water treatment plant (known as ‘Baba-Sheikh-Ali’) in Iran to upgrade existing clarification/filtration processes during the recent years. The applied technologies are mainly used to reduce finished water turbidity as the primary regional criterion on water quality. However, application of both technologies faced some operational limitations since they began to work. These problems are due to the existing layout of the process units and available materials. The current study focuses on performance of restricted application of the two technologies with respect to turbidity removal. Online measured turbidity data from a two-year field observation (since March 2010) are used. In particular, results show a more promising and long-term effect on turbidity removal due to tripling filter media rather than application of the lamella settlers in clarifiers. The reasons for these observations are discussed.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2024
Author(s):  
Abderrezzaq Benalia ◽  
Kerroum Derbal ◽  
Amel Khalfaoui ◽  
Raouf Bouchareb ◽  
Antonio Panico ◽  
...  

The coagulation–flocculation–sedimentation process is widely used for removal of suspended solids and water turbidity reduction. The most common coagulants used to conduct this process are aluminum sulfate and ferric sulfate. In this paper, the use of Aloe vera as a natural-based coagulant for drinking water treatment was tested. The bio-coagulant was used in two different forms: powder as well as liquid; the latter was extracted with distilled water used as a solvent. The obtained results showed that the use of the natural coagulant (Aloe vera) in both powder (AV-Powder) and liquid (AV-H2O) forms reduced the water turbidity at natural pH by 28.23% and 87.84%, respectively. Moreover, it was found that the use of the two previous forms of bio-coagulant for drinking water treatment had no significant influence on the following three parameters: pH, alkalinity, and hardness. The study of the effect of pH on the process performance using Aloe vera as a bio-coagulant demonstrated that the maximum turbidity removal efficiency accounted for 53.53% and 88.23% using AV-Powder and AV-H2O, respectively, at optimal pH 6.


1970 ◽  
Vol 4 (1) ◽  
Author(s):  
Suleyman A. Muyibi ◽  
Saad A. Abbas Megat Johari M. M. Noor Fakrul Razi Ahmadun

In this laboratory based study, varying quantities of oil, corresponding to 20 % w/w, 25 % w/w and 30 % w/w kernel weight extracted from Moringa oleifera seeds ( S1, S2, S3) respectively  were applied in the coagulation of model turbid water (kaolin suspension) and turbid river water samples from River Batang Kali and River Selangor in Malaysia to determine the percentage oil removed which gave the best coagulation efficiency. For model turbid water (kaolin suspension) coagulation of low turbidity of 35 NTU, medium turbidity of 100 NTU and high turbidity of 300 NTU, sample S2  gave the best turbidity removal corresponding to 91.7%, 95.5% and 99% respectively. Application of sample S2 to River Batang Kali with low initial turbidity of 32 NTU and high initial turbidity of 502 NTU gave a highest turbidity removal of 69% and 99% respectively. Application to River Selangor with medium initial turbidity- of 87 NTU and high initial turbidity of 466 NTU gave a highest residual turbidity' of 94% and 98.9%,  respectively.Key words: Moringa oleifera seed, selective oil extraction, coagulation, model turbid water (kaolin suspension), river water, turbidity removal.


2018 ◽  
Vol 13 (3) ◽  
pp. 642-653 ◽  
Author(s):  
Moharram Fouad ◽  
Shaban Hassan

Abstract The performance of a sludge blanket clarifier was evaluated and compared to conventional settlers under high levels of turbidity and algae in the field and experimentally. Field data of sludge blanket and conventional clarifier operation were observed simultaneously for the treatment of highly turbid water. In addition, a comparison was carried out on turbidity removal efficiency, algae removal, and sludge accumulation pattern. Finally, these systems were simulated in the laboratory and operated to treat turbid water with high levels of turbidity and algae up to 80 NTU and 109cells/l respectively. Field data confirmed that the sludge blanket clarifier equipped with upper sludge cones has a high removal efficiency of turbidity and algae, ease of use and has insignificant sludge accumulation compared to the conventional settler. Further, laboratory experiments have confirmed that sludge blanket clarifier is also very effective for the treatment of high algae concentrations up to 109cells/l, with a short retention time, compared to a conventional settler, which was not effective under these conditions.


2017 ◽  
Vol 12 (3) ◽  
pp. 576-588 ◽  
Author(s):  
Seyed Ahmad Mirbagheri ◽  
Sima Malekmohamadi ◽  
Sheida Sohrabi Nasrabadi

Clarifying is one of the most crucial stages in water treatment at water treatment plants. Determining the type of the clarifier in water treatment plants and using it efficiently is necessary. In this study, a pilot is designed and constructed in which the pulsator, the superpulsator and the accelerator are simulated. For each system, turbidity removal efficiency for different influent turbidities and flow rates were studied and the optimum condition was obtained. The results showed that the superpulsator has a superior performance compared to the pulsator, and the pulsator has a superior performance compared to the accelerator and these differences are more sensible at higher flow rates. Also, the best condition for achieving the highest efficiency for the pulsator and the superpulsator is determined to be at flow rate 3 lit/min for an initial turbidity of 2,500 NTU with alum as the coagulant and the highest efficiency for the accelerator is determined to be at flow rate 3 lit/min for an initial turbidity of 2,500 NTU with ferric chloride as the coagulant. Comparing the turbidity removal efficiency shows that for 67% of the cases, ferric chloride has a better performance as the coagulant compared to alum and increasing the influent turbidity leads to an increase in the removal efficiency. Furthermore, three water treatment plants located in Tehran were studied and their characteristics were compared and suggestions were made to enhance their qualities.


2002 ◽  
Vol 2 (5-6) ◽  
pp. 387-394
Author(s):  
H.-B. Jun ◽  
Y.-J. Lee ◽  
S.-S. Shin

Removal characteristics of particulates, natural organic matters, and microorganisms with six slow sand filter units were measured with a diameter of 50 mm and packed with sand to a depth of 50, 150, 300, 600, and two 700 mm, respectively. One of the 700 mm depth filters was amended by covering the surface of the filter bed with a prefilter. The raw water turbidity and pH was in the range of 1.5-2.0 NTU, and 7.0-7.7, respectively. Turbidity in each filter effluent was decreased as the depth of filter medium increased. However, a greater part of influent turbidity was removed within the top layer of the slow sand filters. Turbidity removal in the 700 mm depth filter with prefilter was similar to that without the prefilter, however, the removal of particles smaller than 2 mm was improved with the prefilter. The particles greater than 10 mm could be removed within the upper 50 mm depth in the slow sand filter. A greater fraction of the particles smaller than 2 mm was removed within the upper 50 mm, however, they were also removed in the deeper sand bed. The removal efficiency of DBP precursors represented by DOC and UV-254 absorbance was 9.2-31% and 2-31%, respectively. pH drop in the 50 mm depth filter was 0.12, while that in the 700 mm depth filter was 0.19. The effects of surface treatment with prefilter on UVA and DOC were not apparent.


Sign in / Sign up

Export Citation Format

Share Document