scholarly journals Effects of Rainfall Duration on Hydrological Response of Field Plots under Rainfall Simulation

2018 ◽  
Vol 9 (17) ◽  
pp. 49-56
Author(s):  
Azadeh Katebikord ◽  
Abdulvahed Khaledi Darvishan ◽  
Seyed Jalil Alavi ◽  
◽  
◽  
...  
2004 ◽  
Vol 48 (3) ◽  
pp. 293-304
Author(s):  
José Carlos González-Hidalgo ◽  
Martín De Luís ◽  
Josep Raventós ◽  
Jordi Cortina ◽  
Juán Rafael Sánchez

Soil Systems ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 5 ◽  
Author(s):  
Leon Josip Telak ◽  
Ivan Dugan ◽  
Igor Bogunovic

Proper soil management is crucial to mitigate soil degradation. Hazelnut orchards are often raised on slopes and intensively managed, which makes them similar to the already defined highly erodible land uses like vineyards. This research aims to assess the impacts of soil management and the slope on the soil properties, hydrological response, and erosion in the hazelnut orchard. At eastern Croatia on Cambisols, four treatments were chosen, representing two soil managements in the study area (herbicide and mulched) on two different slope inclinations (high ~9° and low ~4.5°), for rainfall simulation experiments and soil sampling. The herbicide treatments on both slopes removed soil cover and reduced (p < 0.05) soil organic matter, mean weight diameter, and water-stable aggregates. Mulched treatments recorded a lower (p < 0.05) bulk density. These soil properties affected soil hydrological response, as the reduction of infiltration in herbicide plots lead to higher water and sediment losses. The higher slope increased erosion in herbicide soil to over 2.2 t ha−1. Mulching was shown as a superior practice as it enhances soil properties and reduces soil erosion, even reducing the effect of the higher slope on erosional processes.


Author(s):  
Dongxiao Yin ◽  
Z. George Xue ◽  
Daoyang Bao ◽  
Arezoo RafieeiNasab ◽  
Yongjie Huang ◽  
...  

In this study we adapted WRF-Hydro to the Cape Fear River basin (CFRB) to assess its performance during Hurricane Florence (2018). The model was first calibrated with a strategy of mixture of automatic and manual calibration during Florence and then evaluated with an independent hurricane event. With satisfactory NSE values (>0.4) achieved at all gages for hourly simulation, the model demonstrates its potential in simulating the flood response at both basin and sub-basin scale during hurricane events. The model’s capability in reproducing rainfall and properly translating it to hydrological response was further evaluated. The analysis suggests that the calibrated WRF-Hydro in combination with a series of WRF simulation using different microphysics schemes can provide reasonable flood simulations. The model reproduced peak streamflow observed at gage stations with acceptable errors in timing and amplitude. Meanwhile, positive(negative) bias in rainfall input is likely to be amplified (reduced) in streamflow forecast when simulated rainfall volume is larger than the “model true”. And the timing bias mostly inherited from rainfall simulation and calibration process.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3295
Author(s):  
Leon Josip Telak ◽  
Paulo Pereira ◽  
Carla S. S. Ferreira ◽  
Vilim Filipovic ◽  
Lana Filipovic ◽  
...  

Tillage is well known to have impacts on soil properties and hydrological responses. This work aims to study the short-term impacts of tillage (0–3 months) on soil and hydrological responses in fig orchards located in Croatia. Understanding the soil hydrological response in the study area is crucial for soil management due to frequent autumn floods. The hydrological response was investigated using rainfall simulation experiments (58 mm h−1, for 30 min, over 0.785 m2 plots). The results show that the bulk density was significantly higher 3 months after tillage than at 0 and 1 months. The water holding capacity and amount of soil organic matter decreased with time. The water runoff and phosphorous loss (P loss) increased over time. The sediment concentration (SC) was significantly higher 3 months after tillage than in the previous monitoring periods, while sediment loss (SL) and carbon loss (C loss) were significantly lower 0 months after tillage than 3 months after tillage. Overall, there was an increase in soil erodibility with time (high SC, SL, C loss, and P loss), attributed to the precipitation patterns that increase the soil water content and therefore the hydrological response. Therefore, sustainable agricultural practices are needed to avoid sediment translocation and to mitigate floods and land degradation.


1924 ◽  
Vol 16 (8) ◽  
pp. 486-488
Author(s):  
E. P. Deatrick ◽  
O. C. Bryan

2018 ◽  
Vol 5 (2) ◽  
pp. 125-135 ◽  
Author(s):  
Nabil Khorchani ◽  
Khaldoon A. Mourad ◽  
Lars Ribbe

1983 ◽  
Vol 102 (3) ◽  
pp. 511-521 ◽  
Author(s):  
A. R. THOMPSON ◽  
A. L. PERCIVALL ◽  
G. H. EDMONDS ◽  
G. R. LICKORISH
Keyword(s):  

Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1053
Author(s):  
Yuan Yao ◽  
Wei Qu ◽  
Jingxuan Lu ◽  
Hui Cheng ◽  
Zhiguo Pang ◽  
...  

The Coupled Model Intercomparison Project Phase 6 (CMIP6) provides more scenarios and reliable climate change results for improving the accuracy of future hydrological parameter change analysis. This study uses five CMIP6 global climate models (GCMs) to drive the variable infiltration capacity (VIC) model, and then simulates the hydrological response of the upper and middle Huaihe River Basin (UMHRB) under future shared socioeconomic pathway scenarios (SSPs). The results show that the five-GCM ensemble improves the simulation accuracy compared to a single model. The climate over the UMHRB likely becomes warmer. The general trend of future precipitation is projected to increase, and the increased rates are higher in spring and winter than in summer and autumn. Changes in annual evapotranspiration are basically consistent with precipitation, but seasonal evapotranspiration shows different changes (0–18%). The average annual runoff will increase in a wavelike manner, and the change patterns of runoff follow that of seasonal precipitation. Changes in soil moisture are not obvious, and the annual soil moisture increases slightly. In the intrayear process, soil moisture decreases slightly in autumn. The research results will enhance a more realistic understanding of the future hydrological response of the UMHRB and assist decision-makers in developing watershed flood risk-management measures and water and soil conservation plans.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1254
Author(s):  
Marcus Jones ◽  
Marin Harbur ◽  
Ken J. Moore

Plot size has an important impact on variation among plots in agronomic field trials, but is rarely considered during the design process. Uniformity trials can inform a researcher about underlying variance, but are seldom used due to their laborious nature. The objective of this research was to describe variation in maize field trials among field plots of varying size and develop a tool to optimize field-trial design using uniformity-trial statistics. Six uniformity trials were conducted in 2015–2016 in conjunction with Iowa State University and WinField United. All six uniformity trials exhibited a negative asymptotic relationship between variance and plot size. Variance per unit area was reduced over 50% with plots 41.8 m2 in size and over 75% when using a plot size >111.5 m2 compared to a 13.9 m2 plot. Plot shape within a fixed plot size did not influence variance. The data illustrated fewer replicates were needed as plot size increased, since larger plots reduced variability. Use of a Shiny web application is demonstrated that allows a researcher to upload a yield map and consider uniformity-trial statistics to inform plot size and replicate decisions.


2021 ◽  
pp. 117382
Author(s):  
Lei Yan ◽  
Lihong Xue ◽  
Evangelos Petropoulos ◽  
Cong Qian ◽  
Pengfu Hou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document