scholarly journals Production of laccases, cellulases and xylanases of Pleurotus ostreatus grown in liquid-state fermentation

2017 ◽  
Vol 2 (2) ◽  
pp. 169-176
Author(s):  
Edna María Hernández-Domínguez ◽  
Carmen Sánchez ◽  
Gerardo Díaz-Godínez

In this study, activities of laccases, xylanases and cellulases produced by Pleurotus ostreatus in liquid-state fermentation were evaluated. Three fermentations were done by triplicate where the carbon source was changed, one was made with glucose, in another was used carboxymethylcellulose and xylan and in the third the three carbon sources were added, in all cases, copper was added as inducer of laccases. The kinetic parameters of growth of the fungus were obtained. It was observed that this fungus produced the three enzymes evaluated; laccases showed the highest values (34,240 U/L) in the culture medium with glucose as sole carbon source. Cellulases showed their highest activity in the culture medium with xylan and carboxymethylcellulose (12,858 U/L) and xylanases in medium with glucose, carboxymethyl cellulose and xylan (27,153 U/L). Up to 4 isoform of laccases, 2 of xylanase and 2 of cellulases were observed by zymography.

2020 ◽  
Vol 19 (1) ◽  
Author(s):  
Arief Izzairy Zamani ◽  
Susann Barig ◽  
Sarah Ibrahim ◽  
Hirzun Mohd. Yusof ◽  
Julia Ibrahim ◽  
...  

Abstract Background Sugars and triglycerides are common carbon sources for microorganisms. Nonetheless, a systematic comparative interpretation of metabolic changes upon vegetable oil or glucose as sole carbon source is still lacking. Selected fungi that can grow in acidic mineral salt media (MSM) with vegetable oil had been identified recently. Hence, this study aimed to investigate the overall metabolite changes of an omnipotent fungus and to reveal changes at central carbon metabolism corresponding to both carbon sources. Results Targeted and non-targeted metabolomics for both polar and semi-polar metabolites of Phialemonium curvatum AWO2 (DSM 23903) cultivated in MSM with palm oil (MSM-P) or glucose (MSM-G) as carbon sources were obtained. Targeted metabolomics on central carbon metabolism of tricarboxylic acid (TCA) cycle and glyoxylate cycle were analysed using LC–MS/MS-TripleQ and GC–MS, while untargeted metabolite profiling was performed using LC–MS/MS-QTOF followed by multivariate analysis. Targeted metabolomics analysis showed that glyoxylate pathway and TCA cycle were recruited at central carbon metabolism for triglyceride and glucose catabolism, respectively. Significant differences in organic acids concentration of about 4- to 8-fold were observed for citric acid, succinic acid, malic acid, and oxaloacetic acid. Correlation of organic acids concentration and key enzymes involved in the central carbon metabolism was further determined by enzymatic assays. On the other hand, the untargeted profiling revealed seven metabolites undergoing significant changes between MSM-P and MSM-G cultures. Conclusions Overall, this study has provided insights on the understanding on the effect of triglycerides and sugar as carbon source in fungi global metabolic pathway, which might become important for future optimization of carbon flux engineering in fungi to improve organic acids production when vegetable oil is applied as the sole carbon source.


2013 ◽  
Vol 59 (11) ◽  
pp. 746-753 ◽  
Author(s):  
Virgilio Hipólito Lemos de Castro ◽  
Luis Felipe Schroeder ◽  
Betania Ferraz Quirino ◽  
Ricardo Henrique Kruger ◽  
Cristine Chaves Barreto

Soils from the Brazilian Cerrado are nutrient-poor, acidic, and aluminum-rich. A previous study revealed that members of the phylum Acidobacteria were predominant in these oligotrophic soils. Five acidobacteria from Cerrado soil were isolated on VL-55 medium containing 0.05% of xylan as carbon source. All isolates belong to the Acidobacteria subdivision 1, and their 16S rRNA showed similarities of 94.2%–96% with Acidobacterium capsulatum or 98.6% with Edaphobacter aggregans. All isolates were able to sustain growth in a wide range of carbon source concentrations. Growth occurred in all concentrations of arabinose, dextrose, and xylose; only one isolate did not grow on fructose. Isolates grew poorly on N-acetyl-d-glucosamine at all concentrations tested. In general, increasing concentrations of these monosaccharides did not inhibit growth rates. Isolates exhibited growth on solid medium containing xylan, carboxymethyl cellulose, and colloidal chitin; however, growth was observed on solid medium that did not contain these polysaccharides. These isolates may be able to use the solidifying agents tested (gellan gum or agar) as carbon source. This interpretation is supported by the absence of growth in liquid media containing chitin or carboxymethyl cellulose at 0.05% as sole carbon source, whereas growth in the same conditions using xylan was confirmed.


2011 ◽  
Vol 57 (7) ◽  
pp. 559-568 ◽  
Author(s):  
Martine Isabelle ◽  
Richard Villemur ◽  
Pierre Juteau ◽  
François Lépine

An estrogen-degrading bacterial consortium from a swine wastewater biotreatment was enriched in the presence of low concentrations (1 mg/L) of estrone (E1), 17β-estradiol (βE2), and equol (EQO) as sole carbon sources. The consortium removed 99% ± 1% of these three estrogens in 48 h. Estrogen removal occurred even in the presence of an ammonia monooxygenase inhibitor, suggesting that nitrifiers are not involved. Five strains showing estrogen-metabolizing activity were isolated from the consortium on mineral agar medium with estrogens as sole carbon source. They are related to four genera ( Methylobacterium (strain MI6.1R), Ochrobactrum (strains MI6.1B and MI9.3), Pseudomonas (strain MI14.1), and Mycobacterium (strain MI21.2)) distributed among three classes (Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria). Depending on the culture medium, strains MI6.1B, MI9.3, MI14.1, and MI21.2 partially transform βE2 into E1, whereas Methylobacterium sp. strain MI6.1R reduces E1 into βE2 under aerobic conditions, in contrast with the usually observed conversion of βE2 into E1. Since βE2 is a more potent endocrine disruptor than E1, it means that the presence of Methylobacterium sp. strain MI6.1R (or other bacteria with the same E1-reducing activity) in a treatment could transiently increase the estrogenicity of the effluent. MI6.1R can also reduce the ketone group of 16-ketoestradiol, a hydroxylated analog of E1. All βE2 and E1 transformation activities were constitutive, and many of them are favoured in a rich medium than a medium containing no other carbon source. None of the isolated strains could degrade EQO.


2019 ◽  
Author(s):  
Mitchell G. Thompson ◽  
Luis E. Valencia ◽  
Jacquelyn M. Blake-Hedges ◽  
Pablo Cruz-Morales ◽  
Alexandria E. Velasquez ◽  
...  

ABSTRACTPseudomonas putida is a promising bacterial chassis for metabolic engineering given its ability to metabolize a wide array of carbon sources, especially aromatic compounds derived from lignin. However, this omnivorous metabolism can also be a hindrance when it can naturally metabolize products produced from engineered pathways. Herein we show that P. putida is able to use valerolactam as a sole carbon source, as well as degrade caprolactam. Lactams represent important nylon precursors, and are produced in quantities exceeding one million tons per year[1]. To better understand this metabolism we use a combination of Random Barcode Transposon Sequencing (RB-TnSeq) and shotgun proteomics to identify the oplBA locus as the likely responsible amide hydrolase that initiates valerolactam catabolism. Deletion of the oplBA genes prevented P. putida from growing on valerolactam, prevented the degradation of valerolactam in rich media, and dramatically reduced caprolactam degradation under the same conditions. Deletion of oplBA, as well as pathways that compete for precursors L-lysine or 5-aminovalerate, increased the titer of valerolactam from undetectable after 48 hours of production to ~90 mg/L. This work may serve as a template to rapidly eliminate undesirable metabolism in non-model hosts in future metabolic engineering efforts.


2010 ◽  
Vol 432 (2) ◽  
pp. 343-352 ◽  
Author(s):  
Keiji Mitsui ◽  
Masafumi Matsushita ◽  
Hiroshi Kanazawa

Organelle-localized NHEs (Na+/H+ exchangers) are found in cells from yeast to humans and contribute to organellar pH regulation by exporting H+ from the lumen to the cytosol coupled to an H+ gradient established by vacuolar H+-ATPase. The mechanisms underlying the regulation of organellar NHEs are largely unknown. In the present study, a yeast two-hybrid assay identified Mth1p as a new binding protein for Nhx1p, an organellar NHE in Saccharomyces cerevisiae. It was shown by an in vitro pull-down assay that Mth1p bound to the hydrophilic C-terminal half of Nhx1p, especially to the central portion of this region. Mth1p is known to bind to the cytoplasmic domain of the glucose sensor Snf3p/Rgt2p and also functions as a negative transcriptional regulator. Mth1p was expressed in cells grown in a medium containing galactose, but was lost (possibly degraded) when cells were grown in medium containing glucose as the sole carbon source. Deletion of the MTH1 gene increased cell growth compared with the wild-type when cells were grown in a medium containing galactose and with hygromycin or at an acidic pH. This resistance to hygromycin or acidic conditions was not observed for cells grown with glucose as the sole carbon source. Gene knockout of NHX1 increased the sensitivity to hygromycin and acidic pH. The increased resistance to hygromycin was reproduced by truncation of the Mth1p-binding region in Nhx1p. These results implicate Mth1p as a novel regulator of Nhx1p that responds to specific extracellular carbon sources.


Toxins ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 289 ◽  
Author(s):  
Yu Wu ◽  
Taotao Li ◽  
Liang Gong ◽  
Yong Wang ◽  
Yueming Jiang

Fusarium proliferatum can infect many crops and then produce fumonisins that are very harmful to humans and animals. Previous study indicates that carbon sources play important roles in regulating the fumonisin biosynthesis. Unfortunately, there is limited information on the effects of carbon starvation in comparison with the carbon sources present in the host of fumonisin production in F. proliferatum. Our results indicated that F. proliferatum cultivated in the Czapek’s broth (CB) medium in the absence of sucrose could greatly induce production of fumonisin, while an additional supplementation of sucrose to the culture medium significantly reduced the fumonisin production. Furthermore, cellulose and hemicellulose, and polysaccharide extracted from banana peel, which replaced sucrose as the carbon source, can reduce the production of fumonisin by F. proliferatum. Further work showed that these genes related to the synthesis of fumonisin, such as FUM1 and FUM8, were significantly up-regulated in the culture medium in the absence of sucrose. Consistent with fumonisin production, the expressions of FUM gene cluster and ZFR1 gene decreased after the addition of sucrose. Moreover, these genes were also significantly down-regulated in the presence of cellulose, hemicellulose or polysaccharide extracted from peel. Altogether, our results suggested that fumonisin production was regulated in F. proliferatum in response to different carbon source conditions, and this regulation might be mainly via the transcriptional level. Future work on these expressions of the fumonisin biosynthesis-related genes is needed to further clarify the response under different carbon conditions during the infection of F. proliferatum on banana fruit hosts. The findings in this study will provide a new clue regarding the biological effect of the fumonisin production in response to environmental stress.


2002 ◽  
Vol 46 (1-2) ◽  
pp. 519-524 ◽  
Author(s):  
K.R. Pagilla ◽  
A. Sood ◽  
H. Kim

Gordonia amarae, a filamentous actinomycete, commonly found in foaming activated sludge wastewater treatment plants was investigated for its biosurfactant production capability. Soluble acetate and sparingly soluble hexadecane were used as carbon sources for G. amarae growth and biosurfactant production in laboratory scale batch reactors. The lowest surface tension (critical micelle concentration, CMC) of the cell-free culture broth was 55 dynes/cm when 1,900 mg/L acetate was used as the sole carbon source. The lowest surface tension was less than 40 dynes/cm when either 1% (v/v) hexadecane or a mixture of 1% (v/v) hexadecane and 0.5% (w/v) acetate was used as the carbon source. The maximum biomass concentration (the stationary phase) was achieved after 4 days when acetate was used along with hexadecane, whereas it took about 8 days to achieve the stationary phase with hexadecane alone. The maximum biosurfactant production was 3 × CMC with hexadecane as the sole carbon source, and it was 5 × CMC with the mixture of hexadecane and acetate. Longer term growth studies (∼ 35 days of culture growth) indicated that G. amarae produces biosurfactant in order to solubilize hexadecane, and that adding acetate improves its biosurfactant production by providing readily degradable substrate for initial biomass growth. This research confirms that the foaming problems in activated sludge containing G. amarae in the activated sludge are due to the biosurfactant production by G. amarae when hydrophobic substrates such as hexadecane are present.


Molecules ◽  
2021 ◽  
Vol 26 (23) ◽  
pp. 7122
Author(s):  
Shuangfeng Cai ◽  
Yaran Wu ◽  
Yanan Li ◽  
Shuying Yang ◽  
Zhi Liu ◽  
...  

The chlorophyll ethanol-extracted silkworm excrement was hardly biologically reused or fermented by most microorganisms. However, partial extremely environmental halophiles were reported to be able to utilize a variety of inexpensive carbon sources to accumulate polyhydroxyalkanoates. In this study, by using the nile red staining and gas chromatography assays, two endogenous haloarchaea strains: Haloarcula hispanica A85 and Natrinema altunense A112 of silkworm excrement were shown to accumulate poly(3-hydroxybutyrate) up to 0.23 g/L and 0.08 g/L, respectively, when using the silkworm excrement as the sole carbon source. The PHA production of two haloarchaea showed no significant decreases in the silkworm excrement medium without being sterilized compared to that of the sterilized medium. Meanwhile, the CFU experiments revealed that there were more than 60% target PHAs producing haloarchaea cells at the time of the highest PHAs production, and the addition of 0.5% glucose into the open fermentation medium can largely increase both the ratio of target haloarchaea cells (to nearly 100%) and the production of PHAs. In conclusion, our study demonstrated the feasibility of using endogenous haloarchaea to utilize waste silkworm excrement, effectively. The introduce of halophiles could provide a potential way for open fermentation to further lower the cost of the production of PHAs.


2012 ◽  
Vol 78 (15) ◽  
pp. 5375-5383 ◽  
Author(s):  
Nicole Lindenkamp ◽  
Elena Volodina ◽  
Alexander Steinbüchel

ABSTRACTβ-Ketothiolases catalyze the first step of poly(3-hydroxybutyrate) [poly(3HB)] biosynthesis in bacteria by condensation of two acetyl coenzyme A (acetyl-CoA) molecules to acetoacetyl-CoA and also take part in the degradation of fatty acids. During growth on propionate or valerate,Ralstonia eutrophaH16 produces the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [poly(3HB-co-3HV)]. InR. eutropha, 15 β-ketothiolase homologues exist. The synthesis of 3-hydroxybutyryl-CoA (3HB-CoA) could be significantly reduced in an 8-fold mutant (Lindenkamp et al., Appl. Environ. Microbiol. 76:5373–5382, 2010). In this study, a 9-fold mutant deficient in nine β-ketothiolase gene homologues (phaA,bktB, H16_A1713, H16_B1771, H16_A1528, H16_B0381, H16_B1369, H16_A0170, andpcaF) was generated. In order to examine the polyhydroxyalkanoate production capacity when short- or long-chain and even- or odd-chain-length fatty acids were provided as carbon sources, the growth and storage behavior of several mutants from the previous study and the newly generated 9-fold mutant were analyzed. Propionate, valerate, octanoate, undecanoic acid, or oleate was chosen as the sole carbon source. On octanoate, no significant differences in growth or storage behavior were observed between wild-typeR. eutrophaand the mutants. In contrast, during the growth on oleate of a multiple mutant lackingphaA,bktB, and H16_A0170, diminished poly(3HB) accumulation occurred. Surprisingly, the amount of accumulated poly(3HB) in the multiple mutants grown on gluconate differed; it was much lower than that on oleate. The β-ketothiolase activity toward acetoacetyl-CoA in H16ΔphaAand all the multiple mutants remained 10-fold lower than the activity of the wild type, regardless of which carbon source, oleate or gluconate, was employed. During growth on valerate as a sole carbon source, the 9-fold mutant accumulated almost a poly(3-hydroxyvalerate) [poly(3HV)] homopolyester with 99 mol% 3HV constituents.


2014 ◽  
Vol 1070-1072 ◽  
pp. 157-163
Author(s):  
Hao Miao Jiangwang ◽  
Li Huang ◽  
Xu Ya Yu

Effects of different carbon source and Fe3+ for the growth and lipid accumulation of Monoraphidium sp. FXY-10 cultured mixotrophically was studied in our present work. The final cell density was reached to 2.626 g L-1 when glucose was the only carbon source, which is 1.43-fold to sodium acetate (1.834 g L-1), far higher than sucrose (0.251 g L-1) and xylitol (0.471 g L-1), but barely grow in other culture condition. Additionally, the highest algae lipid productivity (77.45 mg L-1 d-1) was obtained in 10 g L-1 glucose group, which indicated that glucose was the optimal carbon source for growth and lipid accumulation of Monoraphidium sp. FXY-10. Nevertheless, Monoraphidium sp. FXY-10 was grew slowly in BG-11 culture medium with the absence of Fe3+. The biomass was achieved at the top with 50μM Fe3+ added. With the increase of Fe3+ concentration, it showed no variation in the growth of microalgae. The highest biomass productivity (209.87 mg L-1 d-1) was reached when the Fe3+ concentration was at 150μM while highest lipid productivity (94.05 mg L-1 d-1) reached at 50μM, which indicated that Fe3+ was one of the most indispensable trace elements for the growth and lipid accumulation of Monoraphidium sp. FXY-10.


Sign in / Sign up

Export Citation Format

Share Document