Isolation of estrogen-degrading bacteria from an activated sludge bioreactor treating swine waste, including a strain that converts estrone to β-estradiol

2011 ◽  
Vol 57 (7) ◽  
pp. 559-568 ◽  
Author(s):  
Martine Isabelle ◽  
Richard Villemur ◽  
Pierre Juteau ◽  
François Lépine

An estrogen-degrading bacterial consortium from a swine wastewater biotreatment was enriched in the presence of low concentrations (1 mg/L) of estrone (E1), 17β-estradiol (βE2), and equol (EQO) as sole carbon sources. The consortium removed 99% ± 1% of these three estrogens in 48 h. Estrogen removal occurred even in the presence of an ammonia monooxygenase inhibitor, suggesting that nitrifiers are not involved. Five strains showing estrogen-metabolizing activity were isolated from the consortium on mineral agar medium with estrogens as sole carbon source. They are related to four genera ( Methylobacterium (strain MI6.1R), Ochrobactrum (strains MI6.1B and MI9.3), Pseudomonas (strain MI14.1), and Mycobacterium (strain MI21.2)) distributed among three classes (Alphaproteobacteria, Gammaproteobacteria, and Actinobacteria). Depending on the culture medium, strains MI6.1B, MI9.3, MI14.1, and MI21.2 partially transform βE2 into E1, whereas Methylobacterium sp. strain MI6.1R reduces E1 into βE2 under aerobic conditions, in contrast with the usually observed conversion of βE2 into E1. Since βE2 is a more potent endocrine disruptor than E1, it means that the presence of Methylobacterium sp. strain MI6.1R (or other bacteria with the same E1-reducing activity) in a treatment could transiently increase the estrogenicity of the effluent. MI6.1R can also reduce the ketone group of 16-ketoestradiol, a hydroxylated analog of E1. All βE2 and E1 transformation activities were constitutive, and many of them are favoured in a rich medium than a medium containing no other carbon source. None of the isolated strains could degrade EQO.

Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 519 ◽  
Author(s):  
Kimiko Yabe ◽  
Haruna Ozaki ◽  
Takuya Maruyama ◽  
Keisuke Hayashi ◽  
Yuki Matto ◽  
...  

The dichlorvos-ammonia (DV-AM) method is a simple but sensitive visual method for detecting aflatoxigenic fungi. Here we sought to develop a selective medium that is appropriate for the growth of aflatoxigenic fungi among soil mycoflora. We examined the effects of different concentrations of carbon sources (sucrose and glucose) and detergents (deoxycholate (DOC), Triton X-100, and Tween 80) on microorganisms in soils, using agar medium supplemented with chloramphenicol. The results demonstrated that 5–10% sucrose concentrations and 0.1–0.15% DOC concentrations were appropriate for the selective detection of aflatoxigenic fungi in soil. We also identified the optimal constituents of the medium on which the normal rapid growth of Rhizopus sp. was completely inhibited. By using the new medium along with the DV-AM method, we succeeded in the isolation of aflatoxigenic fungi from non-agricultural fields in Fukui city, Japan. The fungi were identified as Aspergillus nomius based on their calmodulin gene sequences. These results indicate that the new medium will be useful in practice for the detection of aflatoxigenic fungi in soil samples including those from non-agricultural environments.


Microbiology ◽  
2003 ◽  
Vol 149 (8) ◽  
pp. 2163-2172 ◽  
Author(s):  
Mani Maheswaran ◽  
Karl Forchhammer

The PII signal transduction proteins GlnB and GlnK are uridylylated/deuridylylated in response to the intracellular glutamine level, the primary signal of the cellular nitrogen status. Furthermore, GlnB was shown to be allosterically regulated by 2-oxoglutarate, and thus GlnB was suggested to integrate signals of the cellular carbon and nitrogen status. Receptors of GlnB signal transduction in Escherichia coli are the NtrB/NtrC two-component system and GlnE, an enzyme which adenylylates/deadenylylates glutamine synthetase. In this study, the authors investigated the effect of different carbon sources on the expression of the NtrC-dependent genes glnA and glnK and on the uridylylation status of GlnB and GlnK. With glutamine as nitrogen source, high levels of glnA and glnK expression were obtained when glucose was used as carbon source, but expression was strongly decreased when the cells were grown with poor carbon sources or when cAMP was present. This response correlated with the uridylylation status of GlnB, suggesting that the carbon/cAMP effect was mediated through GlnB uridylylation, a conclusion that was confirmed by mutants of the PII signalling pathway. When glutamine was replaced by low concentrations of ammonium as nitrogen source, neither glnAglnK expression nor GlnB uridylylation responded to the carbon source or to cAMP. Furthermore, glutamine synthetase could be rapidly adenylylated in vivo by the external addition of glutamine; however, this occurred only when cells were grown in the presence of cAMP, not in its absence. Together, these results suggest that poor carbon sources, through cAMP signalling, favour glutamine uptake. The cellular glutamine signal is then transduced by uridylyltransferase and GlnB to modulate NtrC-dependent gene expression.


1994 ◽  
Vol 40 (9) ◽  
pp. 787-790 ◽  
Author(s):  
Ramaraj Boopathy ◽  
John Manning ◽  
Carlo Montemagno ◽  
Kris Rimkus

The metabolism of trinitrobenzene by a Pseudomonas consortium was studied. The Pseudomonas consortium used trinitrobenzene as a sole source of nitrogen, but not as a sole source of carbon. Trinitrobenzene was metabolized within 60 h of incubation. The main intermediates produced were dinitroaniline, 1,5-dinitrobenzene, nitroaniline, 5-nitrobenzene, and ammonia. The ammonia concentration in the culture medium increased during the course of incubation. Nearly stoichiometric amounts of 1,5-dinitrobenzene and 5-nitrobenzene were produced by the consortium. During trinitrobenzene metabolism by this bacterial consortium, the trinitrobenzene was first reduced to an amino compound, dinitroaniline. This intermediate was reductively deaminated with the release of ammonia into the culture medium and production of 1,5-dinitrobenzene. By the same mechanism, 1,5-dinitrobenzene was further converted to 5-nitrobenzene, which was not metabolized further, even after 60 days of incubation. This pathway is believed to be novel in that an aerobic bacterial consortium uses the nitroaromatic compound as its nitrogen source but leaves the ring intact. The bacterial consortium studied could be used in a syntrophic culture system with other 5-nitrobenzene-degrading bacteria to remove trinitrobenzene completely from soil and water at contaminated sites.Key words: trinitrobenzene, aniline, nitrobenzene, biodegradation, transformation.


Toxins ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 289 ◽  
Author(s):  
Yu Wu ◽  
Taotao Li ◽  
Liang Gong ◽  
Yong Wang ◽  
Yueming Jiang

Fusarium proliferatum can infect many crops and then produce fumonisins that are very harmful to humans and animals. Previous study indicates that carbon sources play important roles in regulating the fumonisin biosynthesis. Unfortunately, there is limited information on the effects of carbon starvation in comparison with the carbon sources present in the host of fumonisin production in F. proliferatum. Our results indicated that F. proliferatum cultivated in the Czapek’s broth (CB) medium in the absence of sucrose could greatly induce production of fumonisin, while an additional supplementation of sucrose to the culture medium significantly reduced the fumonisin production. Furthermore, cellulose and hemicellulose, and polysaccharide extracted from banana peel, which replaced sucrose as the carbon source, can reduce the production of fumonisin by F. proliferatum. Further work showed that these genes related to the synthesis of fumonisin, such as FUM1 and FUM8, were significantly up-regulated in the culture medium in the absence of sucrose. Consistent with fumonisin production, the expressions of FUM gene cluster and ZFR1 gene decreased after the addition of sucrose. Moreover, these genes were also significantly down-regulated in the presence of cellulose, hemicellulose or polysaccharide extracted from peel. Altogether, our results suggested that fumonisin production was regulated in F. proliferatum in response to different carbon source conditions, and this regulation might be mainly via the transcriptional level. Future work on these expressions of the fumonisin biosynthesis-related genes is needed to further clarify the response under different carbon conditions during the infection of F. proliferatum on banana fruit hosts. The findings in this study will provide a new clue regarding the biological effect of the fumonisin production in response to environmental stress.


2016 ◽  
Vol 11 (3) ◽  
pp. 451
Author(s):  
Nunik Sulistinah ◽  
Bambang Sunarko

Bacterial consortium capable of growing and utilizing cyanide as a source of nitrogen were isolated from effluent of gold mining industry. The isolation was conducted using liquid enrichment medium with potassium cyanide and glucose as nitrogen and carbon source, respectively. These consortium could tolerate and were able to grow on KCN at concentration of up to 1000 ppm. Bacterial consortium LP3 were also able to degrade potassium cyanide and ammonium as product of the degradation. The degradation rate was 9,0μM per minute. The cyanide-degrading bacteria found in this consortium were identified as Bacillus, Corynebacterium, and Serratia.Keywords: potassium cyanide, nitrogen source, bacterial consortium LP3,degradation


F1000Research ◽  
2020 ◽  
Vol 9 ◽  
pp. 767
Author(s):  
Mautusi Mitra ◽  
Kevin Manoap-Anh-Khoa Nguyen ◽  
Taylor Wayland Box ◽  
Jesse Scott Gilpin ◽  
Seth Ryan Hamby ◽  
...  

Background: Green micro-alga, Chlamydomonas reinhardtii (a Chlorophyte), can be cultured in the laboratory heterotrophically or photo-heterotrophically in Tris-Phosphate-Acetate (TAP) medium, which contains acetate as the carbon source. Chlamydomonas can convert acetate in the TAP medium to glucose via the glyoxylate cycle, a pathway present in many microbes and higher plants. A novel bacterial strain, CC4533, was isolated from a contaminated TAP agar medium culture plate of a Chlamydomonas wild type strain. In this article, we present our research on the isolation, and biochemical and molecular characterizations of CC4533. Methods: We conducted several microbiological tests and spectrophotometric analyses to biochemically characterize CC4533. The 16S rRNA gene of CC4533 was partially sequenced for taxonomic identification. We monitored the growth of CC4533 on Tris-Phosphate (TP) agar medium (lacks a carbon source) containing different sugars, aromatic compounds and saturated hydrocarbons, to see if CC4533 can use these chemicals as the sole source of carbon. Results: CC4533 is a Gram-negative, non-enteric yellow pigmented, aerobic, mesophilic bacillus. It is alpha-hemolytic and oxidase-positive. CC4533 can ferment glucose, sucrose and lactose, is starch hydrolysis-negative, resistant to penicillin, polymyxin B and chloramphenicol. CC4533 is sensitive to neomycin. Preliminary spectrophotometric analyses indicate that CC4533 produces b-carotenes. NCBI-BLAST analyses of the partial 16S rRNA gene sequence of CC4533 show 99.55% DNA sequence identity to that of Sphingobium yanoikuyae strain PR86 and S. yanoikuyae strain NRB095. CC4533 can use cyclo-chloroalkanes, saturated hydrocarbons present in car motor oil, polyhydroxyalkanoate, and mono- and poly-cyclic aromatic compounds, as sole carbon sources for growth. Conclusions: Taxonomically, CC4533 is very closely related to the alpha-proteobacterium S. yanoikuyae, whose genome has been sequenced. Future research is needed to probe the potential of CC4533 for environmental bioremediation. Whole genome sequencing of CC4533 will confirm if it is a novel strain of S. yanoikuyae or a new Sphingobium species.


2014 ◽  
Vol 1070-1072 ◽  
pp. 157-163
Author(s):  
Hao Miao Jiangwang ◽  
Li Huang ◽  
Xu Ya Yu

Effects of different carbon source and Fe3+ for the growth and lipid accumulation of Monoraphidium sp. FXY-10 cultured mixotrophically was studied in our present work. The final cell density was reached to 2.626 g L-1 when glucose was the only carbon source, which is 1.43-fold to sodium acetate (1.834 g L-1), far higher than sucrose (0.251 g L-1) and xylitol (0.471 g L-1), but barely grow in other culture condition. Additionally, the highest algae lipid productivity (77.45 mg L-1 d-1) was obtained in 10 g L-1 glucose group, which indicated that glucose was the optimal carbon source for growth and lipid accumulation of Monoraphidium sp. FXY-10. Nevertheless, Monoraphidium sp. FXY-10 was grew slowly in BG-11 culture medium with the absence of Fe3+. The biomass was achieved at the top with 50μM Fe3+ added. With the increase of Fe3+ concentration, it showed no variation in the growth of microalgae. The highest biomass productivity (209.87 mg L-1 d-1) was reached when the Fe3+ concentration was at 150μM while highest lipid productivity (94.05 mg L-1 d-1) reached at 50μM, which indicated that Fe3+ was one of the most indispensable trace elements for the growth and lipid accumulation of Monoraphidium sp. FXY-10.


2021 ◽  
Vol 9 (11) ◽  
pp. 2285
Author(s):  
Rafaela Perdigão ◽  
C. Marisa R. Almeida ◽  
Catarina Magalhães ◽  
Sandra Ramos ◽  
Ana L. Carolas ◽  
...  

This work aimed to develop a bioremediation product of lyophilized native bacteria to respond to marine oil spills. Three oil-degrading bacterial strains (two strains of Rhodococcus erythropolis and one Pseudomonas sp.), isolated from the NW Portuguese coast, were selected for lyophilization after biomass growth optimization (tested with alternative carbon sources). Results indicated that the bacterial strains remained viable after the lyophilization process, without losing their biodegradation potential. The biomass/petroleum ratio was optimized, and the bioremediation efficiency of the lyophilized bacterial consortium was tested in microcosms with natural seawater and petroleum. An acceleration of the natural oil degradation process was observed, with an increased abundance of oil-degraders after 24 h, an emulsion of the oil/water layer after 7 days, and an increased removal of total petroleum hydrocarbons (47%) after 15 days. This study provides an insight into the formulation and optimization of lyophilized bacterial agents for application in autochthonous oil bioremediation.


2017 ◽  
Vol 2 (2) ◽  
pp. 169-176
Author(s):  
Edna María Hernández-Domínguez ◽  
Carmen Sánchez ◽  
Gerardo Díaz-Godínez

In this study, activities of laccases, xylanases and cellulases produced by Pleurotus ostreatus in liquid-state fermentation were evaluated. Three fermentations were done by triplicate where the carbon source was changed, one was made with glucose, in another was used carboxymethylcellulose and xylan and in the third the three carbon sources were added, in all cases, copper was added as inducer of laccases. The kinetic parameters of growth of the fungus were obtained. It was observed that this fungus produced the three enzymes evaluated; laccases showed the highest values (34,240 U/L) in the culture medium with glucose as sole carbon source. Cellulases showed their highest activity in the culture medium with xylan and carboxymethylcellulose (12,858 U/L) and xylanases in medium with glucose, carboxymethyl cellulose and xylan (27,153 U/L). Up to 4 isoform of laccases, 2 of xylanase and 2 of cellulases were observed by zymography.


2002 ◽  
Vol 184 (17) ◽  
pp. 4767-4774 ◽  
Author(s):  
M. J. K. Ellington ◽  
K. K. Bhakoo ◽  
G. Sawers ◽  
D. J. Richardson ◽  
S. J. Ferguson

ABSTRACT Paracoccus pantotrophus can express a periplasmic nitrate reductase (Nap) during aerobic growth. A proposed role for this enzyme is the dissipation of excess redox energy during oxidative metabolism of reduced carbon substrates. To investigate the regulation of nap expression, a transcriptional fusion between the nap promoter region of P. pantotrophus and the lacZ gene was constructed. When this fusion was used, analyses showed that transcription from the nap promoter increases as the average reduction state of the carbon atoms increases. Thus, β-galactosidase activities increase as the carbon source changes in the order succinate-acetate-butyrate. This result was obtained regardless of which of the three carbon sources was used for culture of the inoculum. If two carbon sources were presented together, the β-galactosidase activity was always the same as it was when the least-reduced carbon source was added alone. This suggests that the regulation is dependent upon metabolism of the more-reduced carbon sources rather than just their presence in the medium. Analysis of culture medium by 1H nuclear magnetic resonance showed that for aerobic growth P. pantotrophus strictly selected its carbon source in the order succinate-acetate-butyrate. This was reflected by diauxic growth kinetics on medium containing mixed carbon substrates. The regulatory mechanism underpinning such a selection is unknown but is likely to be related to the mechanism which controls the transcription of the nap operon.


Sign in / Sign up

Export Citation Format

Share Document