Structural Repair/Retrofit of Brick Masonry Walls

2021 ◽  
Vol 3 (1) ◽  
pp. 5-9
Author(s):  
R.H. Atkinson

The various methods presently available for the repair of brick masonry walls are reviewed. Particular attention is given to structural repair made necessary as the result of earthquake induced damage or retrofit measures to be applied to an existing masonry structure to increase seismic resistance. Among the techniques discussed are: crack injection with epoxy or resin, crack or void injection with a cement based grout, surface coating methods, base isolation, repointing or limited replacement of damaged elements and installation of steel reinforcing elements. Use of nondestructive evaluation methods to determine the initial damaged state and the condition of the repaired masonry wall will also be presented.

Author(s):  
M. J. N. Priestley ◽  
D. O. Bridgeman

This paper summarises the results obtained from testing 18 reinforced masonry wall panels under racking load. The programme included tests on both RBM and Hollow Cell types of brick construction under slow cyclic loading. It is shown that satisfactory ductility can be obtained from brick masonry walls if sufficient horizontal steel is provided to carry the full shear load, and if the critical compression zones at the bottom corners of the wall are confined by the use of thin reinforcing plates in the bottom few mortar courses. Without these precautions severe load degradation occurs under successive load reversals.


2010 ◽  
Vol 133-134 ◽  
pp. 201-204
Author(s):  
Ibrahim Mohamad H. Wan ◽  
B.H. Abu Bakar ◽  
M.A. Megat Johari ◽  
P.J. Ramadhansyah

This paper presents the behaviour of moisture movement of calcium silicate brick masonry walls exposed to sodium sulphate environment. The walls were exposed to three sodium sulphate conditions with sulphate concentrations of5%, 10% and 15%. For comparison, some walls were also exposed to dry and wet condition which acts as a control conditions. All specimens were prepared and cured under polythene sheet for 14 days in a controlled environmental room and maintained at relative humidity and temperature of 80 ± 5% and 25 ± 2°C, respectively. After the curing period, the specimens were exposed to sodium sulphate as well as drying and water exposures, during which moisture movement was measured and monitored for a period of up to 7 months. As a result, the moisture expansion was observed and recorded for all masonry wall specimens after exposed to the sulphate condition.


2018 ◽  
Vol 215 ◽  
pp. 01034 ◽  
Author(s):  
Muhammad Ridwan ◽  
Ruddy Kurniawan ◽  
Agus

In principle, the main construction of the non-engineered building in Indonesia is the wooden structure. It can be seen from traditional houses in Indonesia. However, In the last two centuries, the use of brick masonry as wall component has been becoming the primary material. Another side, some places in Indonesia are the seismic areas and earthquake-prone areas. Learning from the earthquake that has happened in the last ten years, the building that used clay brick for masonry wall mostly suffered damage and destruction when subjected to a relatively high intensity of the earthquake. This paper used data from several places and some references. There have significant differences in the mechanical properties of the bricks. Generally, Indonesian bricks masonry have limited capability and substantial differences in the mechanical properties when compared to another country bricks. By the considering, the Indonesian bricks masonry that has low mechanical properties, so that it is proposed to use brick masonry to non-seismic only. It should be considered to use clay brick as the main component of the wall for a particular region in Indonesia. Next, the zoning of allowed masonry structure in Indonesia is proposed.


Buildings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 103
Author(s):  
Houria Hernoune ◽  
Benchaa Benabed ◽  
Antonios Kanellopoulos ◽  
Alaa Hussein Al-Zuhairi ◽  
Abdelhamid Guettala

Near surface mounted (NSM) carbon fibers reinforced polymer (CFRP) reinforcement is one of the techniques for reinforcing masonry structures and is considered to provide significant advantages. This paper is composed of two parts. The first part presents the experimental study of brick masonry walls reinforced with NSM CFRP strips under combined shear-compression loads. Masonry walls have been tested under vertical compression, with different bed joint orientations 90° and 45° relative to the loading direction. Different reinforcement orientations were used including vertical, horizontal, and a combination of both sides of the wall. The second part of this paper comprises a numerical analysis of unreinforced brick masonry (URM) walls using the detailed micro-modelling approach (DMM) by means of ABAQUS software. In this analysis, the non-linearity behavior of brick and mortar was simulated using the concrete damaged plasticity (CDP) constitutive laws. The results proved that the application of the NSM-CFRP strips on the masonry wall influences significantly strength, ductility, and post-peak behavior, as well as changing the failure modes. The adopted DMM model provides a good interface to predict the post peak behavior and failure mode of unreinforced brick masonry walls.


2011 ◽  
Vol 250-253 ◽  
pp. 278-282 ◽  
Author(s):  
Song Gu ◽  
Guo Ping Chen ◽  
Shui Wen Zhu

The purpose of this paper was to investigate the mechanical behavior and failure mode of recycled concrete brick masonry wall under cycling in-plane load. These models of masonry walls were constructed in the laboratory and experimented under in-plane cycling load. The masonry wall was made of recycled concrete bricks joined by mortar, with gypsum lining on both faces. A simulation based on the experiment was carried out using the finite element software ANSYS. In the proposed FE model, the recycling concrete bricks and joints were modeled separately, allowing for nonlinear deformation characteristics of the two materials. The results of the experiment and the finite element analysis were analyzed and compared. When the stress distributions were taken into consideration in the experiments and solutions of ANSYS, it was observed that the stress concentration occurred on two diagonals of the masonry wall. The destruction process and characteristics of the masonry wall were obtained by the experiments. The results of finite element method matched experimental results very well. The FE software ANSYS can be used in the analysis of recycling concrete brick masonry walls under in-plane cycling load and strength capacity.


2021 ◽  
Vol 2070 (1) ◽  
pp. 012190
Author(s):  
S Shenbagavalli ◽  
Ramesh Babu Chokkalingam

Abstract The strength of the masonry mainly depends on type of bond, types of bricks, compressive strength of the bricks and mortar used. The types of bonds play a major role in the properties of brick masonry wall. The most common types of bond used in practice are English bond, Flemish bond, Stretcher bond and Header bond. A lot of study has been performed on the load-carrying capacity of masonry walls. In this paper, effort has been taken to study the influence of different bonds on the flexural strength of the flyash brick masonry wall. For this wall of size 1m × 0.76m × 0.22m has been casted, cured for 28 days and tested in a loading frame. From the results, it was found the English bond gave higher flexural strength compared to other bonds such as Flemish, Stretcher and Header bond. The flexural strength of English bond was around 45 to 50% higher than the other bonds. The crack pattern at failure was also noted for all the masonry walls.


2017 ◽  
Vol 8 (1) ◽  
pp. 11
Author(s):  
Mosfeka Mahabuba Akter ◽  
Atique Shahariar ◽  
Md. Shafiqul Islam

Brick masonry walls consist of the main elements that responsible for the global stability of brick masonry buildings when subjected to lateral loads such as wind and seismic forces. These elements are subjected to gravity forces, bending moments and shear forces due to the horizontal loading. The application of reinforcement increases the deformation capacity, controls the crack opening and allows a better distribution of stresses. Longitudinal reinforcements increase the flexural strength, even if they seem not to influence the shear behavior. Effectiveness of reinforcement on the increase of the resistance of brick masonry wall is highly related to the failure mode of the element. This paper shows the flexural strength of reinforced perforated brick masonry wall and weight loss of reinforcements for corrosion after a certain period of time. Several reinforce bar arrangements into the perforated brick masonry walls show the variety of possible applications.


2014 ◽  
Vol 684 ◽  
pp. 195-201
Author(s):  
Zhen Lei ◽  
Yong Wang ◽  
Jun Tong Qu

FRP strength technique can increase the lateral strength of masonry walls, but the effect of the presence of pre-damage in the walls before retrofitted has not been studied. In this study, the experimental results from two half-scale RC-brick masonry walls with opening retrofitted with BFRP composite strips are presented. One wall was initially damaged in shear loading up to its maximum strength, and then repaired with BFRP sheets; another one was directly strengthened with BFRP sheets in the same strengthening configuration. All the walls were subjected to cyclic in-plane shear loading up to failure. Compared to the strengthened walls, the repaired masonry wall has almost the same failure mode and FRP strain rule, and slightly lower lateral strength and deformation capacity as well as energy dissipation capacity.


2020 ◽  
Vol 20 (6) ◽  
pp. 151-157
Author(s):  
Hoijin Kim ◽  
Zheongzun Yi ◽  
Jongsup Park ◽  
Junsuk Kang

Due to the increase in the frequency and intensity of earthquakes and the number of old buildings and in Korea, there is an expected increase in the damage to life and property. Therefore, we intend to derive an indicator to evaluate the risk level by conducting a seismic test on old buildings. An initial crack was generated in the masonry structure to reflect the deterioration. The effect of the deterioration on the building was subsequently analyzed by comparing it with the uncracked control group. As a result, the masonry wall, which was the specimen, satisfied the seismic performance, but local failure occurred along the initial crack in the specimen considering the aging. The safety was significantly decreased due to the occurrence of additional cracks. This demonstrates that the cracks caused by the aging of the masonry building greatly damaged the seismic performance of the building.


2012 ◽  
Vol 193-194 ◽  
pp. 1444-1448
Author(s):  
Na Na Yao ◽  
Wen Fang Zhang ◽  
Jian Wei Wei

This paper researces the effect of flange width on anti-seismic performance of flanged brick masonry walls. Four T-shaped cross section unreinforced brick masonry walls with different flange width and one rectangular shaped cross section brick masonry wall are studied and analyzed by ABAQUS finite element method.Analyze and compare the force-displacement curves of flanged brick masonry wall under the composed of vertical and lateral load.The results indicate that the flange width has a significant effect on the shear bearing capacity and ductility. The shear bearing capacity and ductility factor of T-shaped cross section brick masonry walls with 1.6m flange width are respectively 20% and 50% higher than the no flange wall .The flange effect is obvious when the flange width is not more than 1.6m, the value of shear bearing capacity and ductility are higher when the flange width become longer.


Sign in / Sign up

Export Citation Format

Share Document