Phytochemical Screening and Invitro Antibacterial Effect of Tamarindus Indica L. Stem and Leaves On E. Coli, S. Aureus and P. Mirabilis

Author(s):  
M.I Babangida ◽  
S.P. Bako ◽  
D.N. Iortsuun
2014 ◽  
Vol 10 (4) ◽  
pp. 553-561 ◽  
Author(s):  
Samaneh Mazdeh ◽  
Hossein Motamedi ◽  
Azim Khiavi ◽  
Mohammad Mehrabi

Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3543
Author(s):  
Wei Zhou ◽  
Jiawei Fang ◽  
Shuwei Tang ◽  
Zhengguo Wu ◽  
Xiaoying Wang

Cushioning and antibacterial packaging are the requirements of the storage and transportation of fruits and vegetables, which are essential for reducing the irreversible quality loss during the process. Herein, the composite of carboxymethyl nanocellulose, glycerin, and acrylamide derivatives acted as the shell and chitosan/AgNPs were immobilized in the core by using coaxial 3D-printing technology. Thus, the 3D-printed cushioning–antibacterial dual-function packaging aerogel with a shell–core structure (CNGA/C–AgNPs) was obtained. The CNGA/C–AgNPs packaging aerogel had good cushioning and resilience performance, and the average compression resilience rate was more than 90%. Although AgNPs was slowly released, CNGA/C–AgNPs packaging aerogel had an obvious antibacterial effect on E. coli and S. aureus. Moreover, the CNGA/C–AgNPs packaging aerogel was biodegradable. Due to the customization capabilities of 3D-printing technology, the prepared packaging aerogel can be adapted to more application scenarios by accurately designing and regulating the microstructure of aerogels, which provides a new idea for the development of food intelligent packaging.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Álvaro de Jesús Ruíz-Baltazar ◽  
Simón Yobanny Reyes-López ◽  
D. Larrañaga ◽  
R. Pérez

Nanoparticles of Ag with different sizes and structures were obtained and studied. Two methods for reductions of Ag ions were employed, chemical reduction by sodium borohydride and ethylene glycol. Cuboctahedral and icosahedral structures were obtained. Molecular simulations were carried out in order to evaluate the reactivity of both structures. On the other hand, the electrochemical activity and antibacterial effect (E. coli) of the cuboctahedral and icosahedral structures were measured experimentally. The results obtained by molecular simulation, cyclic voltammetry, and antibacterial effect were compared and discussed in this work.


2005 ◽  
Vol 68 (9) ◽  
pp. 1895-1899 ◽  
Author(s):  
MANOJ KUMAR MOHAN NAIR ◽  
HANEM ABOUELEZZ ◽  
THOMAS HOAGLAND ◽  
KUMAR VENKITANARAYANAN

The antibacterial effect of low concentrations of monocaprylin on Escherichia coli O157:H7 in apple juice was investigated. Apple juice alone (control) or containing 2.5 mM (0.055%) or 5 mM monocaprylin was inoculated with a five-strain mixture of E. coli O157:H7 at ~6.0 log CFU/ml. The juice samples were stored at 23 or 4°C for 14 or 21 days, respectively, and the population of E. coli O157:H7 was determined on tryptic soy agar plates supplemented with 0.6% yeast extract. At both storage temperatures, the population of E. coli O157:H7 in monocaprylin-supplemented juice samples was significantly lower (P < 0.05) than that in the control samples. The concentration of monocaprylin and the storage temperature had a significant effect on the inactivation of E. coli O157:H7 in apple juice. Monocaprylin at 5 mM was significantly more effective than 2.5 mM monocaprylin for killing E. coli O157:H7 in apple juice. Inactivation of E. coli O157:H7 by monocaprylin was more pronounced in juice stored at 23°C than in the refrigerated samples. Results of this study indicated that monocaprylin is effective for killing E. coli O157:H7 in apple juice, but detailed sensory studies are needed to determine the organoleptic properties of apple juice containing monocaprylin.


2019 ◽  
Author(s):  
Yuqing Chen ◽  
Wei Wu ◽  
Zeqiao Xu ◽  
Cheng Jiang ◽  
Shuang Han ◽  
...  

Abstract Background: Treatment of multidrug-resistant (MDR) bacterial infection is a great challenge in public health. Herein, we provide a solution to this problem with the use of graphene oxide-silver (GO-Ag) nanocomposites as anti-bacterial agent. Methods: Following established protocols, silver nanoparticles were grown on graphene oxide sheets. Then, a series of in-vitro studies were conducted to validate the antibacterial efficiency of the GO-Ag nanocomposites against clinical MDR Escherichia coli (E. coli) strains. Firstly, minimum inhibitory concentrations (MICs) of different antimicrobials were tested against MDR E. Coli strains. Then, bacteria viability assessments were conducted with different nanomaterials in Luria-Bertani (LB) broth. Afterwards, photothermal irradiation was conducted on MDR E. coli with lower GO-Ag concentration. At last, fluorescent imaging and morphology characterization using scanning electron microscope (SEM) were done to find the possible cause of antibacterial effect. Results: GO-Ag nanocomposites showed the highest antibacterial efficiency among tested antimicrobials. Synergetic antibacterial effect was observed in GO-Ag nanocomposites treated group. The remained bacteria viabilities were 4.4% and 4.1% respectively for different bacteria strains with GO-Ag concentration at 14.0 µg mL-1. In addition, GO-Ag nanocomposites have strong absorption in the near-infrared field and can convert the electromagnetic energy to heat. With the use of this photothermal effect, effective sterilization could be achieved using GO-Ag nanocomposites concentration as low as 7.0 µg mL-1. Fluorescent imaging and morphology characterization were used to analyze bacteria living status, which uncovered that bacteria integrity was disrupted after GO-Ag nanocomposites treatment. Conclusions: GO-Ag nanocomposites are proved to be efficient antibacterial agent against multi-drug resistant E. coli. Their strong antibacterial effect arises from inherent antibacterial property and photothermal effect that provides aid for bacteria killing.


2017 ◽  
Vol 16 (1) ◽  
Author(s):  
Soraya Ismail ◽  
Nur Farhana Azmi ◽  
Khin Maung Maung ◽  
Pakeer Oothuman

Introduction: Snakebite has been categorised as a ‘neglected tropical disease’ by WHO in 2009 and it affects mainly the poorer countries like Africa and Asia. The standard treatment for snake envenomation is the anti-snake venom medication which can be very expensive, not readily available and specific against a snake species. This study was conducted to screen the phytochemical compounds of Tamarindus indica seed extract (TSE) and its in-vitro effects on snake venom of three snake species; namely Daboia russelli, Naja kaouthia and Ophiophagus hannah. Materials and method: Ethanolic Soxhlet extract of TSE was used. Phytochemical screening analysing for saponins, alkaloids, flavanoids, anthraquinone derivatives, arthraquinone glycosides, phenolic compounds, tannins, terpenoids, sterol and volatile oils were carried out. In-vitro enzymatic inhibition study on venom enzymes namely phospholipase A2 (PLA2), proteinase and phosphomonoesterase (PME) were studied by measuring the absorbance using the spectrophotometer. There were two main groups; Group 1: venom only; and Group 2: venom with TSE. The mean triplicate determination of venom enzyme activity post-exposure to TSE from Group 2 was taken and analysed against 100% venom enzyme activity from Group 1. Results: Phytochemical screening showed that the TSE has (+++) phenolics and (+++) hydrolysable tannins. TSE significantly reduced all venom enzymatic activities i.e. PLA2, proteinase and PME from the three snake species at 925 nm, 280 nm and 400 nm, respectively. SDS-PAGE experiment showed the disruption of venom protein bands from all three snake species when venom was exposed to 4.76 µg TSE. Conclusion: Ethanolic TSE contains mainly phenolics and hydrolysable tannins which can reduce the snake venom enzymatic activities. This is possibly due to the formation of tannin-protein complex rendering the venom less potent.


2017 ◽  
Vol 66 (3) ◽  
pp. 71-74
Author(s):  
Nikolay A. Korobkov

Introduction: the following research investigates an availability of a long-lime treatment of postpartum infection by using of Cephalozolin (the Cephalosporine of generation I). Matherials and Methods. Lochia samples were obtained from the uterine cavities of 21 puerperal women who did not receive drug after delivery and were cultured for the identification and the determination of the susceptibilities of the clinical isolates to Cephalozolin. The concentrations of Cephalozolin in the supernatants were measured by highperformance liquid chromatography. Results. We determined the sensivity of the most clinically important bacteria to Cephazoline and its penetration rate to the uterine cavity. We found out the following bacteria which are sensible to Cephazoline – S. agalactiae, E. coli, K. pneumoniae, E. aerogenes. A low rate of Cephazoline ≤ 0,78 mg/ml was inhibited the growth of mentioned above bacteria. Cephazoline is also active as for S. aureus – MIC90 and was equal 3.13 mg/ml. In 3 hours after the injection of 1.0 gr of Cephazoline there was a maximum concentration in a venous blood – 1.63 mg/ml. The concentration of Cephazoline in lochia was rising gradually and it maximum in the uterus cavity in 5 hours was 1.26 mg/ml, and then its slowly went down. Conclusions. The mention above results let us suggest that Cephazoline is penetrates actively to lochia and its still has a good antibacterial effect. Cephazoline is still a treatment of choice as for prevention and a treatment of postpartum surgical site infections by a sensitive microorganism.


2019 ◽  
Vol 2 (1) ◽  
pp. 01-06
Author(s):  
Rhazi Fouzia

Study contextual: Faced with the global problem of antimicrobial resistance, and the use of traditional medicine for the research of antibacterial biomolecules. Aim: our work focused on the valorization of a medicinal plant Dittrichia viscosa which has many therapeutic and culinary virtues worldwide. Methods: To do this, a phytochemical screening of the leafy stems of the plant is carried out according to a set of physicochemical reactions, as well as an in vitro evaluation of the antibacterial activity, of the aqueous and ethanolic extracts against multi-resistant bacterial strains, by microdilution technique on microplates. An evaluation of the synergistic interaction between extracts and weakened antibiotics against pathogenic bacteria was also highlighted in this study. Results: The tests revealed the richness of Dittrichia viscosa species by tannins, flavonoids, saponosides, sterols and triterpenes. As for the antibacterial effect, the MICs range from 0.858±0.29 to 66.66 ± 0.00 mg / ml and the MBCs from 4.300 ± 1.01 to 11.610 ± 2.31 mg / ml is an interesting antibacterial activity. Regarding the combination of extracts with antibiotics tested, it revealed a synergistic action inducing an amplification of the antibacterial power of Penicillin, Imipenem and Erythromycin with a rate that reaches 471%. Conclusion: The results of this study show that the aqueous and ethanolic extracts of Dittrichia viscosa have interesting and promising antibacterial activity in the pharmaceutical, food and cosmetic industries.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Nguyen Lam Uyen Vo ◽  
Thi Thuy Van Nguyen ◽  
Tri Nguyen ◽  
Phung Anh Nguyen ◽  
Van Minh Nguyen ◽  
...  

In this study, CuO-ZnO composite was synthesized via the sol-gel method using oxalic acid to form the medium complex and its applications in antibacterial have been conducted with B. cereus, E. coli, S. aureus, Salmonella, and P. aeruginosa. Then, nanopowder of CuO-ZnO was coated on shoe insoles and their antibacterial effect with S. aureus was tested. The nanocomposite products were characterized by XRD, XPS, SEM, TEM, and UV-Vis. The results showed that the CuO-ZnO composite has the average particle size in a range of 20-50 nm, the point of zero charge of 7.8, and the bandgap of 1.7 eV. XPS result shows the composite structure with Cu2+ in the product. The minimum inhibitory concentration (MIC) of CuO-ZnO nanocomposite was 0.313 mg·mL-1 for S. aureus and Samonella, 0.625 mg·mL-1 for E. coli, and 5 mg·mL-1 for B. cereus and P. aeruginosa. The shoe insoles coated with 0.35 wt.% of CuO-ZnO nanocomposite also had high antibacterial activity against S. aureus, and this antibacterial nanocomposite was implanted durably on the surface of the shoe insoles.


Sign in / Sign up

Export Citation Format

Share Document