Phytochemical Screening, Antibacterial and Synergistic activity of Dittrichia Viscosa Extracts against Multi-Resistant Pathogenic Bacteria

2019 ◽  
Vol 2 (1) ◽  
pp. 01-06
Author(s):  
Rhazi Fouzia

Study contextual: Faced with the global problem of antimicrobial resistance, and the use of traditional medicine for the research of antibacterial biomolecules. Aim: our work focused on the valorization of a medicinal plant Dittrichia viscosa which has many therapeutic and culinary virtues worldwide. Methods: To do this, a phytochemical screening of the leafy stems of the plant is carried out according to a set of physicochemical reactions, as well as an in vitro evaluation of the antibacterial activity, of the aqueous and ethanolic extracts against multi-resistant bacterial strains, by microdilution technique on microplates. An evaluation of the synergistic interaction between extracts and weakened antibiotics against pathogenic bacteria was also highlighted in this study. Results: The tests revealed the richness of Dittrichia viscosa species by tannins, flavonoids, saponosides, sterols and triterpenes. As for the antibacterial effect, the MICs range from 0.858±0.29 to 66.66 ± 0.00 mg / ml and the MBCs from 4.300 ± 1.01 to 11.610 ± 2.31 mg / ml is an interesting antibacterial activity. Regarding the combination of extracts with antibiotics tested, it revealed a synergistic action inducing an amplification of the antibacterial power of Penicillin, Imipenem and Erythromycin with a rate that reaches 471%. Conclusion: The results of this study show that the aqueous and ethanolic extracts of Dittrichia viscosa have interesting and promising antibacterial activity in the pharmaceutical, food and cosmetic industries.

2019 ◽  
Vol 2 (1) ◽  
pp. 01-06
Author(s):  
Rhazi Filali Fouzia ◽  
Ennacerie Fatima-Zahra ◽  
Ed-Dra Abdelaziz ◽  
Zekkouri Badr ◽  
Bentayeb Amar

Study contextual: Faced with the global problem of antimicrobial resistance, and the use of traditional medicine for the research of antibacterial biomolecules. Aim: our work focused on the valorization of a medicinal plant Dittrichia viscosa which has many therapeutic and culinary virtues worldwide. Methods: To do this, a phytochemical screening of the leafy stems of the plant is carried out according to a set of physicochemical reactions, as well as an in vitro evaluation of the antibacterial activity, of the aqueous and ethanolic extracts against multi-resistant bacterial strains, by microdilution technique on microplates. An evaluation of the synergistic interaction between extracts and weakened antibiotics against pathogenic bacteria was also highlighted in this study. Results: The tests revealed the richness of Dittrichia viscosa species by tannins, flavonoids, saponosides, sterols and triterpenes. As for the antibacterial effect, the MICs range from 0.858±0.29 to 66.66 ± 0.00 mg / ml and the MBCs from 4.300 ± 1.01 to 11.610 ± 2.31 mg / ml is an interesting antibacterial activity. Regarding the combination of extracts with antibiotics tested, it revealed a synergistic action inducing an amplification of the antibacterial power of Penicillin, Imipenem and Erythromycin with a rate that reaches 471%. Conclusion: The results of this study show that the aqueous and ethanolic extracts of Dittrichia viscosa have interesting and promising antibacterial activity in the pharmaceutical, food and cosmetic industries.


Antibiotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 89 ◽  
Author(s):  
Shahabe Abullais Saquib ◽  
Nabeeh Abdullah AlQahtani ◽  
Irfan Ahmad ◽  
Mohammed Abdul Kader ◽  
Sami Saeed Al Shahrani ◽  
...  

Background: In the past few decades focus of research has been toward herbal medicines because of growing bacterial resistance and side effects of antimicrobial agents. The extract derived from the plants may increase the efficacy of antibiotics when used in combination against pathogenic bacteria. In the current study, the synergistic antibacterial efficacy of plant extracts in combination with antibiotics has been assessed on selected periodontal pathogens. Methods: Ethanolic extracts were prepared from Salvadora persica (Miswak) and Cinnamomum zeylanicum (Ceylon cinnamon), by the soxhalate method. Plaque samples were collected from clinical periodontitis patients to isolate and grow the periodontal pathobionts under favorable conditions. Susceptibility of bacteria to the extracts was assessed by gauging the diameter of the inhibition zones. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of plant extracts were determined against each bacterium. Synergistic activity of plants extract in combination with antibiotics against the bacteria was also assessed by measuring the diameter of the inhibition zones. Results: Ethanolic extract of both the plants showed an inhibitory effect on the proliferation and growth of all four strains of periodontal pathobionts. Maximum antibacterial activity was exhibited by C. zeylanicum against Tannerella forsythia (MIC = 1.56 ± 0.24 mg/mL, MBC = 6.25 ± 0.68 mg/mL), whereas among all the studied groups the minimum activity was reported by C. zeylanicum against Aggregatibacter actinomycetemcomitans the (MIC = 12.5 ± 3.25 mg/mL, MBC = 75 ± 8.23 mg/mL). Combination of herbal extracts with different antibiotics revealed a synergistic antibacterial effect. The best synergism was exhibited by S. persica with metronidazole against A. actinomycetemcomitans (27 ± 1.78). Conclusions: Current in vitro study showed variable antibacterial activity by experimented herbal extracts against periodontal pathobionts. The synergistic test showed significant antibacterial activity when plant extracts were combined with antibiotics.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Bishnu P. Marasini ◽  
Pankaj Baral ◽  
Pratibha Aryal ◽  
Kashi R. Ghimire ◽  
Sanjiv Neupane ◽  
...  

The worldwide increase of multidrug resistance in both community- and health-care associated bacterial infections has impaired the current antimicrobial therapy, warranting the search for other alternatives. We aimed to find thein vitroantibacterial activity of ethanolic extracts of 16 different traditionally used medicinal plants of Nepal against 13 clinical and 2 reference bacterial species using microbroth dilution method. The evaluated plants species were found to exert a range ofin vitrogrowth inhibitory action against the tested bacterial species, andCynodon dactylonwas found to exhibit moderate inhibitory action against 13 bacterial species including methicillin-resistantStaphylococcus aureus, imipenem-resistantPseudomonas aeruginosa, multidrug-resistantSalmonella typhi, andS. typhimurium. The minimum inhibitory concentration (MIC) values of tested ethanolic extracts were found from 31 to >25,000 μg/mL. Notably, ethanolic extracts ofCinnamomum camphora, Curculigo orchioides, andCurcuma longaexhibited the highest antibacterial activity againstS. pyogeneswith a MIC of 49, 49, and 195 μg/mL, respectively; whereas chloroform fraction ofCynodon dactylonexhibited best antibacterial activity againstS. aureuswith a MIC of 31 μg/mL. Among all,C. dactylon, C. camphora, C. orchioides, andC. longaplant extracts displayed a potential antibacterial activity of MIC < 100 μg/mL.


2020 ◽  
Vol 17 (36) ◽  
pp. 18-31
Author(s):  
Ahmad khadem HACHIM ◽  
Rashid Rahim HATEET ◽  
Tawfik Muhammad MUHSIN

The purpose of the present work aimed at exploring the potential biochemical components and biological activities of an organic extract of the white truffle Tirmania nivea collected from the Iraqi desert, then test the organic extract against the Cytotoxicity on Human Larynx carcinoma cells and selected strains of pathogenic bacteria. Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry GC/MSS were used to analyze mycochemical compositions. The antibacterial activity and Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC) was investigated using a disk diffusion agar method. The truffle extract's cytotoxicity effect against the larynx cell line (Hep-2) was assessed by the MTT assay (in vitro). FTIR results provided the presence of phenol, carboxylic acid, and alkane's functional group, The GC-MS analysis of T. nivea disclose the existence of nineteen compounds that can contribute to the pharmaceutical properties of the truffle. As for antibacterial activity result, A growth inhibition activity of truffle extract at (18-40 mm inhibition zones) against the tested pathogenic bacterial strains was detected, which minimum inhibitory concentration values ranged from 3.12 to 6.25 mg/mL for Escherichia coli (ATCC 25922) and Staphylococcus aureus (ATCC 25923) Respectively. The results of cytotoxicity shown that the organic truffle extract exhibited a high inhibitory rate (52.685%) against cell line (Hep-2) at a concentration of 1.56 ?g/mL. In this work, the results showed that the organic extracts of T. nivea are very promising as cancer cytotoxicity and antibacterial agent for future medical applications.


Author(s):  
Bhavani J ◽  
Sunil Kumar Prajapati ◽  
Ravichandran S

Opportunistic bacterial infections are common in the various parts of human body. In recent years bacterial species have shown resistance against a number of synthetic drugs. This study measured the antibacterial activity of bacterial strains against five common pathogenic bacteria related strains. Cup plate method and two fold serial dilution method were used to evaluated by antibacterial activity by the help of different bacterial related strains. The results revealed that Cisplatin (CIP) using natural as a polymer showed a minimum inhibitory concentration (MIC) at 250 mg/ml to 500 mg/ml of the broth against all bacterial strains. CIP using natural as a polymer was prepared different doses1000 μg/ml and 2000 μg/ ml and measured zone of inhibition dose dementedly reduced when compared to standard. The CIP using natural as a polymer exhibited strong anti-bacterial activity against five different species of bacteria and this may be attributed to various active components. Our research work has been indicated Nanoparticles containing CIP using natural as a polymer formulated for the enhanced anti-cancer activity through antimicrobial mechanism. 


2021 ◽  
Vol 17 (1) ◽  
pp. 041-051
Author(s):  
Ivan Cédric Mvondo Ozela ◽  
Patrick Yamen Mbopi ◽  
Herve Narcisse Bayaga ◽  
Pierre Réne Kwetche Fotsing ◽  
Jean Jacques Tchouani ◽  
...  

The high incidence of infectious diseases and the emergence of resistance to modern drugs are current public health concerns. This situation leads to the search for alternatives via medicinal plants. The objective of this study was to assess the properties of Vernonia conferta. We performed an experimental study. The plant material consisted of the leaves and trunk bark of V. conferta. The extraction was carried out by maceration using aqueous and hydro-ethanolic solvents, followed by phytochemical screening of the extracts. An evaluation of the antibacterial potential was carried out by the micro-dilution method and was followed by the evaluation of the antioxidant properties (DPPH and FRAP test) and cytotoxicity (resazurin staining) of the extracts. The E2 and E4 extracts exhibited better extraction yields. The phytochemical screening noted the presence of families of compounds in common (polyphenols, tannins and quinones) and those which are different. The hydro-ethanolic extracts exhibited antibacterial activity on the strains of interest with MICs varying from 2 to 32 mg / mL with a possibility of synergistic action between the compounds. The evaluation of the antioxidant properties showed that the extracts E1, E3 and E4 showed better properties with IC50 = 25.1 ± 0.410; 2.456 ± 0.002; 2.363 ± 0.015 µg / mL respectively according to the tested method. The extracts showed their non-cytotoxicity with CC50> 1000 µg / mL. The activities of hydro-ethanolic extracts of V. conferta suggest that the latter would be a potential raw material for the production of improved traditional medicines.


Author(s):  
L. Rajanna ◽  
N. Santhosh Kumar ◽  
N. S. Suresha ◽  
S. Lavanya

The in vitro antibacterial assay was carried out against both Gram positive (B. cerus and S. aureus) and Gram negative (E. coli and K. pneumoniae) bacteria. Floral petals of 20 different species of plants were collected and tested for antibacterial activity. The result showed that the petals were active against both Gram positive and Gram negative. Out of 20 floral petals tested, 19 floral petals exhibited antibacterial activity against selected bacterial strains. The minimal inhibitory zone of floral petal discs against human pathogenic bacteria varies from 2 – 6 mm. Rosa carolina and Ruellia tuberosa showed significance inhibition zone for all the bacterial strains while Lantana camara does not show inhibition zone for any of these pathogenic bacteria.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Paola Cynthia Emoh Demeni ◽  
Patrick Hervé Diboue Betote ◽  
Christelle Wayoue Kom ◽  
Eric Ngalani Tchamgoue ◽  
Esther Del Florence Ndedi Moni ◽  
...  

This study evaluated the antibacterial efficacy of methanolic extracts of isolated endophytic fungi from stem barks and leaves of Alstonia boonei De Wild and Greenwayodendron suaveolens (Engl. and Diels) Verdc. subsp. Suaveolens against Klebsiella pneumoniae ATCC 43816, Haemophilus influenzae ATCC 49247, Pseudomonas aeruginosa ATCC 27853, and Escherichia coli ATCC 35218, responsible for causing pneumonia. The endophytic fungi were isolated and characterized in the Potato Dextrose Agar (PDA), Sabouraud Dextrose Agar (SDA), and Czapek Dox Agar (CDA) media. The fungi and their methanolic extracts were tested for in vitro antibacterial potential by antagonistic assay for endophytic fungi against bacterial pathogens and microdilution method. The phytochemical screening of extracts was carried out according to the colorimetric and precipitation methods to reveal the presence of secondary metabolites. The results showed that 24 macroscopically and microscopically distinct endophytic fungi were isolated, identified, and stored. These endophytic fungi possessed antibacterial activity against the selected bacterial strains with inhibition zones ranging from 7.00 to 25.00 mm. The endophytic fungi GS15 and AB24 have presented the inhibitions zones of 20.33 mm and 25.00 mm, respectively, and these were better than the ones obtained for Levofloxacin®. The endophytes with inhibition zones greater than 10 mm were used for extraction of their secondary metabolites. The endophytic fungi extracts showed antibacterial activity with the minimum inhibitory concentrations (MICs) ranging from 6.25 × 10−4 to 2 × 10−2 g/L and the minimum bactericidal concentrations (MBCs) ranging from 2.5 × 10−3 to 2 × 10−2 g/L. The endophytic fungi GS15 extract was the most effective extract; it showed bactericidal effects on the tested bacterial strains. The phytochemical screening of the extracts revealed the presence of secondary metabolites classes, responsible for causing the obtained antibacterial activity. Thus, the endophytic fungi methanolic extracts from A. boonei and G. suaveolens have the potential to inhibit the growth of bacteria responsible for nosocomial pneumonia.


2020 ◽  
Vol 13 (1) ◽  
pp. 121-126
Author(s):  
K. Geetha ◽  
M. Chellapandian ◽  
N. Arulnathan ◽  
A. Ramanathan

Aim: This study was aimed to investigate antimicrobial and cytotoxicity effect of nano ZnO in in vitro for the application of livestock feed supplement. Materials and Methods: Nano ZnO was synthesized by wet chemical precipitation method using zinc acetate as a precursor and sodium hydroxide was used for reducing the precursor salt. The properties of synthesized powder were characterized using ultraviolet (UV)–visible spectroscopy, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), and X-ray diffraction (XRD), respectively. In vitro antimicrobial activities were analyzed against the pathogenic bacteria in poultry Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Streptococcus aeruginosa. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was conducted to analyze the cytotoxicity effect of nano ZnO. Results: SEM showed a spherical ZnO particle in the range of 70-100 nm. The size of the particle and purity of the sample were confirmed by XRD. The nano-sized ZnO particles exhibited the UV absorption peak at 335 nm. In FTIR spectroscopy, pure ZnO nanoparticles showed stretching vibrations at 4000-5000 cm-1. ZnO nanoparticles exhibited remarkable antibacterial activity against E. coli, S. aureus, K. pneumoniae, and S. aeruginosa bacterial strains. Cell viability was significantly reduced in a dose-dependent manner in the cytotoxicity study. Conclusion: From the broad-spectrum antibacterial activity and the lower cytotoxicity observed at the prescribed dose, it is concluded that nano ZnO powder is a potential alternate zinc supplement for livestock.


2016 ◽  
Vol 5 (4) ◽  
pp. 141-144
Author(s):  
Vinod Kumar ◽  
◽  
C. S. Mathela ◽  
Amit Panwar ◽  
◽  
...  

Essential oils from Calamintha umbrosa and Nepeta species viz. N. leucophylla; N. hindostana; N. ciliaris and N. clarkei (family Lamiaceae), was tested against six bacterial strains. To evaluate the correlation between the antimicrobial activity and the essential oils, PCA and HCA analysis was done. PCA and HCA analysis of the antibacterial activity revealed that essential oils of Nepeta species had a strong and broad spectrum antibacterial effect against bacterial strains of P. aeruginosa and S. scandidus. The N. leucophylla oil showed higher activity against Gram-negative bacteria P. aeruginosa (10.5 mm, MIC 10 µL/mL) and K. pneumonia (9.1 mm, MIC 45 µL/mL) among all Nepeta oils which may be due to presence of active antimicrobial iridoids compounds.


Sign in / Sign up

Export Citation Format

Share Document