CFD Simulation of the Air Flow around a Car Model (Ahmed Body)

Author(s):  
Senan Thabet ◽  
Thabit H. Thabit
Keyword(s):  
Air Flow ◽  
Author(s):  
G. Bella ◽  
V. K. Krastev

The need for reliable CFD simulation tools is a key factor for today’s automotive industry, especially for what concerns aerodynamic design driven by critical factors such as the engine cooling system optimization and the reduction of drag forces, both limited by continuously changing stylistic constraints. The Ahmed body [1] is a simplified car model nowadays largely accepted as a test-case prototype of a modern passenger car because in its aerodynamic behavior is possible to recognize many of the typical features of a light duty vehicle. Several previous works have pointed out that the flow region which presents the major contribution to the overall aerodynamic drag, and which presents severe problems to numerical predictions and experimental studies as well, is the wake flow behind the vehicle model. In particular, a more exact simulation of the wake and separation process seems to be essential for the accuracy of drag predictions. In this paper a numerical investigation of flow around the Ahmed body, performed with the open-source CFD toolbox OpenFOAM®, is presented. Two different slant rear angle configurations have been considered and several RANS turbulence models, as well as different wall treatments, have been implemented on a hybrid unstructured computational grid. Pressure drag predictions and other flow features, especially in terms of flow structures and velocity field in the wake region, have been critically compared with the experimental data available in the literature and with some prior RANS-based numerical studies.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Dillon Alexander Wilson ◽  
Kul Pun ◽  
Poo Balan Ganesan ◽  
Faik Hamad

Microbubble generators are of considerable importance to a range of scientific fields from use in aquaculture and engineering to medical applications. This is due to the fact the amount of sea life in the water is proportional to the amount of oxygen in it. In this paper, experimental measurements and computational Fluid Dynamics (CFD) simulation are performed for three water flow rates and three with three different air flow rates. The experimental data presented in the paper are used to validate the CFD model. Then, the CFD model is used to study the effect of diverging angle and throat length/throat diameter ratio on the size of the microbubble produced by the Venturi-type microbubble generator. The experimental results showed that increasing water flow rate and reducing the air flow rate produces smaller microbubbles. The prediction from the CFD results indicated that throat length/throat diameter ratio and diffuser divergent angle have a small effect on bubble diameter distribution and average bubble diameter for the range of the throat water velocities used in this study.


2019 ◽  
Vol 6 (3) ◽  
Author(s):  
Anastasiya Shustikova ◽  
Andrei Kozichev ◽  
Sergei Paryshev ◽  
Konstantin Strelkov

Recently, long span bridge construction has been demanded for development of the regions of the Russian Federation. In terms of economy, it’s useful to build a combined road-railway bridge. Such bridges, generally, constitute a metal cross-cutting girder with carriageways on lower, upper or both zones of the girder. The major advantages of combined bridges are high strength and load capacity, plus cross-cutting to wind load. Focus of this research is a combined road-railway bridge over the Ob river at the stage of assembling and operation. The purpose of the study was to determine the limits of aeroelastic stability of combined road-railway bridge at the stage of assembling and operation using numerical simulation. To better understand the bridges behaviour in air flow, flow around a section model has been researched with CFD simulation in the ANSYS FLUENT. Then based on the given results of the calculations the dependence of the bridge vibrations on wind speed within a specified range is obtained, and also values of drag coefficient Сх, lift coefficient Су and torque coefficient Мz are received. These studies were carried out in the range of angles of attack α = ±3°. The possibility of divergence and galloping was also estimated. The results of the study made it possible to estimate the influence of air flow on combined bridge cross-cutting girder. Overall, the conducted research seems promising for further investigation and development in the field of bridge aeroelasticity.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 244
Author(s):  
Saber Karimi ◽  
Arash Zargar ◽  
Mahmoud Mani ◽  
Arman Hemmati

The feasibility of a single dielectric barrier discharge (SDBD) actuator in controlling flow over an Ahmed body, representing a simplified car model, has been numerically and experimentally investigated at Reynolds numbers of 7.68×105 and 2.25×105. The Ahmed body had slant angles of 25∘ and 35∘. The results showed that SDBD actuators could significantly enhance the aerodynamic performance of the Ahmed body. Several arrangements of the actuators on the slant surface and the rear face of the model were examined to identify the most effective arrangement for drag reduction. This arrangement resulted in an approximately 6.1% drag reduction. This improvement in aerodynamic performance is attributed to the alteration of three-dimensional wake structures due to the presence of SDBD, which coincides with surface pressure variations on the slant and rear faces of the Ahmed body.


2016 ◽  
Vol 87 (13) ◽  
pp. 1631-1642 ◽  
Author(s):  
Xueliang Xiao ◽  
Andrew Long ◽  
Kun Qian ◽  
Xuesen Zeng ◽  
Tao Hua

Many technical applications of woven fabric are subject to increasing high pressure from air transport through the fabric. The through-thickness permeability (TP) of woven materials exhibits a dynamic response to increased air pressure. This paper presents an analytical model for predicting the steady TP of woven fabric. The approach was based on Darcy’s law and the Poiseuille equation, using the flow boundary of an idealized plain-weave unit cell. The unit cell model consists of a gradual converging-diverging (GCD) duct with a rectangular cross-section. Further, the dynamic TP of the GCD duct was established analytically as a function of increasing pressure, which correlates to the separation of air flow from the GCD duct wall. Air flow separation from the duct wall led to a quadratic relationship between the increasing pressure and air flow velocities. This dynamic TP and air flow nonlinearity were simulated numerically in the computational fluid dynamics solver CFX. Five GCD ducts under increasing air pressure were analyzed numerically and analytically. The comparison showed good agreement between the proposed analytical model and the CFD simulation, with a maximum error up to 12%. A sensitivity study showed that an increase in porosity or a decrease in the thickness of weave materials could result in a larger dynamic TP value.


2019 ◽  
pp. 44-50
Author(s):  
Галина Олександрівна Кобалава

Among modern jet technologies, one of the promising research areas is a study of gas-dynamic processes in the aerothermopressor. This jet apparatus is a device for contact cooling (the heat from the air flow is consumed for the instantaneous evaporation of water droplets), in which there is a thermogasdynamic compression effect, and that is, the air pressure increase is taken place. A significant influence on the working processes in the aerothermopressor is exercised by design factors. The influence of these factors on energy costs to overcome the friction losses and local resistances on the convergent-divergent sections of the apparatus was investigated. Relevant in the aerothermopressors development is to determinate of rational parameters of the workflow organization with the corresponding development of the flow part design. At the same time, it is necessary to have an opportunity for analytical determination of pressure losses in the confuser and diffuser of the aerothermopressor. A research of typical models of the aerothermopressor for a number of taper angles of a confuser a (convergent angle a = 30; 35; 40; 45; 50 °) and diffuser b (divergent angle b = 6; 8; 10; 12 °), for a number of air velocity values in the working chamber M = 0.4-0.8 has been carried out. The obtained calculated data (results of computer CFD-simulation) and experimental data have been compared. The error of the values for the coefficients of local resistances in the confuser and diffuser does not exceed 7-10%. It was established that the value of the local resistance coefficient depends only on the geometrical parameters (the angle of tapering and the diameters ratio of the input and output D1/D2), that is, the air flow character in the aerothermopressor corresponds to the self-similar mode. The recommended angles were determined: confuser convergent angle a = 30 ° and diffuser divergent angle b = 6 °, corresponding to the minimum pressure loss DPloss = 1.0–9.5 %. The empirical equations were defined for determining the local resistance coefficients of the confuser and diffuser, which can be recommended for use in the design of low-flow aerothermopressor for microturbines


2008 ◽  
Vol 13 (1) ◽  
pp. 89-101 ◽  
Author(s):  
M. M. A. Sarker ◽  
E. Kim ◽  
G. C. Moon ◽  
J. I. Yoon

The performance characteristics of the Hybrid Closed Circuit Cooling Tower (HCCCT) have been investigated applying computational fluid dynamics (CFD). Widely reported CFD techniques are applied to simulate the air-water two phase flow inside the HCCCT. The pressure drop and the cooling capacity were investigated from several perspectives. Three different transverse pitches were tested and found that a pitch of 45 mm had lower pressure drop. The CFD simulation indicated that when air is supplied from the side wall of the HCCCT, the pressure drop can be over predicted and the cooling capacity can be under predicted mainly due to the non-uniform air flow distribution across the coil bank. The cooling capacity in wet mode have been calculated with respect to wet-bulb temperature (WBT) and cooling water to air mass flow rates for different spray water volume flow rates and the results were compared to the experimental measurement and found to conform well for the air supply from the bottom end. The differences of the cooling capacity and pressure drop in between the CFD simulation and experimental measurement in hybrid mode were less than 5 % and 7 % respectively for the uniform air flow distribution.


2019 ◽  
Vol 29 ◽  
pp. 153-158 ◽  
Author(s):  
Ashish Kumar ◽  
Srijna Singh ◽  
Neelanchali Asija Bhalla

2021 ◽  
Vol 11 (01) ◽  
pp. 1-16
Author(s):  
H. Kursat Celik ◽  
Ali Bedel ◽  
Sevilay Gok ◽  
Allan E. W. Rennie

Sign in / Sign up

Export Citation Format

Share Document