scholarly journals Conductivity and Activation Energy in Polymers Synthesized by Plasmas of Thiophene

2019 ◽  
Vol 54 (1) ◽  
Author(s):  
Ma. Guadalupe Olayo ◽  
Guillermo J. Cruz ◽  
Salvador López ◽  
Juan Morales ◽  
Roberto Olayo

The electric conductivity, activation energy and morphology of polythiophene synthesized by radiofrequency resistive plasmas are studied in this work. The continuous collisions of particles in the plasma induce the polymerization of thiophene but also break some of the monomer molecules producing complex polymers with thiophene rings and aliphatic hydrocarbon segments. These multidirectional chemical reactions are more marked at longer reaction times in which the morphology of the polymers evolved from smooth surfaces, at low exposure time, to spherical particles with diameter in the 300-1000 nm interval. Between both morphologies, some bubbles are formed on the surface. The intrinsic conductivity of plasma polymers of thiophene synthesized in this way varied in the range of 10-10 to 10-8 S/m; however, the conductivity resulted very sensitive to the water content in the polymers, which produced variations of up to 5 magnitude orders. The activation energy of the intrinsic conductivity was between 0.56 and 1.41 eV, increasing with the reaction time.   Plasma, Polymerization, Polythiophene, Conductivity, Activation Energy

1988 ◽  
Vol 66 (5) ◽  
pp. 373-375 ◽  
Author(s):  
C. J. Arsenault ◽  
D. E. Brodie

Zn-rich and P-rich amorphous Zn3P2 thin films were prepared by co-evaporation of the excess element during the normal Zn3P2 deposition. X-ray diffraction techniques were used to investigate the structural properties and the crystallization process. Agglomeration of the excess element within the as-made amorphous Zn3P2 thin film accounted for the structural properties observed after annealing the sample. Electrical measurements showed that excess Zn reduces the conductivity activation energy and increases the conductivity, while excess P up to 15 at.% does not alter the electrical properties significantly.


2017 ◽  
Vol 8 ◽  
pp. 2002-2014 ◽  
Author(s):  
Andrei Choukourov ◽  
Pavel Pleskunov ◽  
Daniil Nikitin ◽  
Valerii Titov ◽  
Artem Shelemin ◽  
...  

This contribution reviews plasma polymer nanoparticles produced by gas aggregation cluster sources either via plasma polymerization of volatile monomers or via radio frequency (RF) magnetron sputtering of conventional polymers. The formation of hydrocarbon, fluorocarbon, silicon- and nitrogen-containing plasma polymer nanoparticles as well as core@shell nanoparticles based on plasma polymers is discussed with a focus on the development of novel nanostructured surfaces.


2020 ◽  
Vol 12 (6) ◽  
pp. 810-814 ◽  
Author(s):  
Xiao-Lei Song ◽  
Yi-Lin Wu ◽  
Si-Ran Zhang ◽  
Zhi Chen ◽  
Yong-Gui Li

Multi-structured NdFe2O4 magnetic nanoparticles (NPs) were successfully prepared at different reaction times through a convenient solvothermal method. The microstructure and elemental composition of the NPs were characterized using powder X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) technique. An energy dispersive spectrometer (EDS) was connected to a scanning electron microscope to determine the weight and atomic percent of the prepared products. Subsequently, high-resolution transmission electron microscopy (HR/TEM) and TEM were performed at 3, 7, 11, and 15 h to elucidate the synthetic mechanism of the rare-earth element Nd doped in Fe3O4. The magnetic activities of the NPs were evaluated using a vibrating sample magnetometer (VSM). XRD, EDS, and XPS analyses show that Nd was successfully doped into Fe3O4 without breaking its crystal structure. Procedural single-crystal nanosheets and final spherical particles of NdFe2O4 were verified by TEM. The magnetic parameters of the products were further analyzed using the VSM.


1986 ◽  
Vol 70 ◽  
Author(s):  
J. Kolodzey ◽  
S. Aljishi ◽  
Z E. Smith ◽  
V. Chu ◽  
R. Schwarz ◽  
...  

ABSTRACTThe effects of illumination on the optical and electronic properties of narrow gap hydrogenated and fluorinated amorphous Si-Ge (a-Si1-xGex:H, F) alloys have been evaluated. A series of alloys with optical gaps ranging from 1.30 eV to 1.64 eV has been light soaked at ∼1 sun intensity for 354 hours. Measurements of sub-gap absorption, photo- and dark conductivities and dark conductivity activation energy were made on alloys in the annealed and the light-soaked states. The results indicate that samples with optical gaps ≳ 1.4 eV degrade significantly. The 1.3 eV sample shows no degradation in its optical or electronic properties except for a factor of 5 increase in the dark conductivity.


1998 ◽  
Vol 36 (5-6) ◽  
pp. 290-293 ◽  
Author(s):  
Jean-Claude M'Peko ◽  
A.Rabdel Ruiz-Salvador ◽  
Gerardo Rodrı́guez-Fuentes

Author(s):  
Yuliya Verhozina ◽  
Yuriy Pozhidaev

The composition and structure of the membrane based on the acid-base method of elemental analysis, IR and NMR spectroscopy were studied. The ion-exchange capacity, proton conductivity, activation energy, and thermogravimetric analysis of the resulting membranes were studied.


Sign in / Sign up

Export Citation Format

Share Document