scholarly journals Preparations and Activities Necessary for Aerial Mosquito Control After Hurricanes

2020 ◽  
Vol 36 (2s) ◽  
pp. 90-97
Author(s):  
Broox G. V. Boze ◽  
Daniel M. Markowski ◽  
Deborah Bennett ◽  
Malcom G. Williams

ABSTRACT Vector Disease Control International (VDCI) has a long history of aiding mosquito control efforts necessary for recovery after natural disasters like hurricanes and major floods. As waters associated with these events begin to recede, both nuisance and vector mosquito species surge in abundance and consequently play an increased role in public health. When these situations arise, state and county agencies implement emergency response plans and many rely on Federal Emergency Management Agency or private contractors for assistance in reducing mosquito populations that can alter arbovirus transmission cycles, cause intolerable stress, hamper reconstruction efforts, and disrupt normal community functions. Vector Disease Control International owns the largest fleet of fixed-wing aircraft dedicated specifically to mosquito control and has worked every major storm event since Hurricane Bonnie in 1998. This article describes the logistics and operations required for implementing VDCI's emergency management plan, including the relocation of equipment, adult mosquito surveillance, delivery of pesticides, assessment of efficacy, and filing of low-level waivers and congested-area plans with the Federal Aviation Administration.

2020 ◽  
Vol 10 (4) ◽  
pp. 1353-1360 ◽  
Author(s):  
Vanessa M. Macias ◽  
Sage McKeand ◽  
Duverney Chaverra-Rodriguez ◽  
Grant L. Hughes ◽  
Aniko Fazekas ◽  
...  

Innovative tools are essential for advancing malaria control and depend on an understanding of molecular mechanisms governing transmission of malaria parasites by Anopheles mosquitoes. CRISPR/Cas9-based gene disruption is a powerful method to uncover underlying biology of vector-pathogen interactions and can itself form the basis of mosquito control strategies. However, embryo injection methods used to genetically manipulate mosquitoes (especially Anopheles) are difficult and inefficient, particularly for non-specialist laboratories. Here, we adapted the ReMOT Control (Receptor-mediated Ovary Transduction of Cargo) technique to deliver Cas9 ribonucleoprotein complex to adult mosquito ovaries, generating targeted and heritable mutations in the malaria vector Anopheles stephensi without injecting embryos. In Anopheles, ReMOT Control gene editing was as efficient as standard embryo injections. The application of ReMOT Control to Anopheles opens the power of CRISPR/Cas9 methods to malaria laboratories that lack the equipment or expertise to perform embryo injections and establishes the flexibility of ReMOT Control for diverse mosquito species.


2021 ◽  
Vol 15 (8) ◽  
pp. e0009438
Author(s):  
Isik Unlu ◽  
Ary Faraji ◽  
Nicholas Indelicato ◽  
James R. McNelly

Background Aedes (Stegomyia) albopictus (Skuse) impacts human outdoor activity because of its aggressive biting behavior, and as a major vector of mosquito-borne diseases, it is also of public health importance. Although most mosquito species exhibit crepuscular activity by primarily host seeking at dawn and dusk, Ae. albopictus has been traditionally characterized as a diurnal or day-biting mosquito. With the global expansion and increased involvement of Ae. albopictus in mosquito-borne diseases, it is imperative to elucidate the diel activity of this species, particularly in newly invaded areas. Methodology and principal findings Human sweep netting and carbon dioxide-baited rotator traps were used to evaluate the diel activity of Ae. albopictus in two study sites. Both trapping methods were used in New Jersey’s Mercer County, USA (temperate/urban), while only human sweep netting was used in Florida’s Volusia County, USA (subtropical/suburban). Human sweep netting was performed to determine adult mosquito activity at Sunrise, Solar Noon, Sunset, and Lunar Midnight. Because New Jersey is in a temperate area, diel activity was investigated during the early season (3–19 July), peak season (25 July-19 September), and late season (22 September- 22 October). Aedes albopictus showed the highest activity during peak and late seasons at Solar Noon (P < 0.05). At Sunrise and Sunset during the peak season, Ae. albopictus activity was similar. Lunar Midnight activity was significantly lower than Sunrise and Solar Noon (P < 0.05) but was similar to that of Sunset. In the late season, the highest activity was observed during Solar Noon while the least activity was observed during Sunrise and Lunar Midnight (P<0.05). Bottle rotator traps used in conjunction with the human sweep net technique exhibited similar results. Seasonal activity was not differentiated in Florida due to the consistent subtropical climate. The highest adult activity was observed at Sunrise using human sweep netting, but it was not significantly different from Solar Noon and Sunset. The lowest adult activity was observed at Lunar Midnight; however, it was not significantly different from Solar Noon and Sunset. These results provide evidence that the diel activity of Ae. albopictus, contrary to the common perception of its diurnal activity, is much more varied. Conclusion/Significance Involvement of Ae. albopictus in the transmission of debilitating mosquito-borne pathogens such as chikungunya, dengue, and Zika virus, coupled with its affinity to thrive in human peridomestic environments, substantiates that our findings have global implications in areas where Ae. albopictus populations established. It also highlights the importance of behavioral studies of vector species which will not only help mosquito control professionals plan the timing of their control efforts but also provides empirical evidence against conventional wisdoms that may unjustly persist within public health stewards.


2021 ◽  
Vol 22 (11) ◽  
Author(s):  
Bahadin Salavati ◽  
AMIR HOSSEIN ZAHIRNIA ◽  
Hassan Nasirian ◽  
SHAHYAD AZARI-HAMIDIAN

Abstract. Salavati B, Zahirnia AH, Nasirian H, Hamidian SA. 2021. Trend of mosquito (Diptera: Culicidae) monthly distribution in Sanandaj County of Iran. Biodiversitas 22: 4705-4715. Mosquitoes are the most significant arthropods of medical importance due to their burden of transmitting pathogens and parasites. The present study was designed to investigate the distribution of mosquitos (Diptera: Culicidae) in Sanandaj County in 2018. Sanandaj County was divided into four areas in rural and urban areas, including north, south, east, and west. Four rural and urban areas were randomly selected from four geographical directions. A sampling of larval and adult mosquitoes was performed using standard methods. The dipping technique was used to collect the mosquito larvae. A sampling of adult mosquitoes was performed during feeding on humans and animal baits and resting in the natural indoors, outdoors, and artificial areas. Light traps were also used to collect adult mosquitoes. The larval and adult specimens were identified using the morphology-based key. In total, nine mosquito species, including Anopheles maculipennis s.l., Anopheles superpictus s.l., Culiseta longiareolata, Culiseta subochrea, Culex hortensis, Culex mimeticus, Culex modestus, Culex pipiens, and Culex theileri were inhabited in Sanandaj County. The larval and adult mosquito species trend remains constant for at least 6 months of a year, from May to October. One-way ANOVA didn't reveal a significant difference between mosquito breeding places' habitats and water types, mosquito localities and life stages, monthly mosquito distribution, and adult mosquito resting places. The frequency trends of larval and adult mosquito species remain constant at least for 6 months of a year. It needs to be ready for timely mosquito control measures.


Pathogens ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 380 ◽  
Author(s):  
Maria Vittoria Mancini ◽  
Claudia Damiani ◽  
Sarah M. Short ◽  
Alessia Cappelli ◽  
Ulisse Ulissi ◽  
...  

Mosquitoes can transmit many infectious diseases, such as malaria, dengue, Zika, yellow fever, and lymphatic filariasis. Current mosquito control strategies are failing to reduce the severity of outbreaks that still cause high human morbidity and mortality worldwide. Great expectations have been placed on genetic control methods. Among other methods, genetic modification of the bacteria colonizing different mosquito species and expressing anti-pathogen molecules may represent an innovative tool to combat mosquito-borne diseases. Nevertheless, this emerging approach, known as paratransgenesis, requires a detailed understanding of the mosquito microbiota and an accurate characterization of selected bacteria candidates. The acetic acid bacteria Asaia is a promising candidate for paratransgenic approaches. We have previously reported that Asaia symbionts play a beneficial role in the normal development of Anopheles mosquito larvae, but no study has yet investigated the role(s) of Asaia in adult mosquito biology. Here we report evidence on how treatment with a highly specific anti-Asaia monoclonal antibody impacts the survival and physiology of adult Anopheles stephensi mosquitoes. Our findings offer useful insight on the role of Asaia in several physiological systems of adult mosquitoes, where the influence differs between males and females.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Roger Eritja ◽  
Sarah Delacour-Estrella ◽  
Ignacio Ruiz-Arrondo ◽  
Mikel A. González ◽  
Carlos Barceló ◽  
...  

Abstract Background Active surveillance aimed at the early detection of invasive mosquito species is usually focused on seaports and airports as points of entry, and along road networks as dispersion paths. In a number of cases, however, the first detections of colonizing populations are made by citizens, either because the species has already moved beyond the implemented active surveillance sites or because there is no surveillance in place. This was the case of the first detection in 2018 of the Asian bush mosquito, Aedes japonicus, in Asturias (northern Spain) by the citizen science platform Mosquito Alert. Methods The collaboration between Mosquito Alert, the Ministry of Health, local authorities and academic researchers resulted in a multi-source surveillance combining active field sampling with broader temporal and spatial citizen-sourced data, resulting in a more flexible and efficient surveillance strategy. Results Between 2018 and 2020, the joint efforts of administrative bodies, academic teams and citizen-sourced data led to the discovery of this species in northern regions of Spain such as Cantabria and the Basque Country. This raised the estimated area of occurrence of Ae. japonicus from < 900 km2 in 2018 to > 7000 km2 in 2020. Conclusions This population cluster is geographically isolated from any other population in Europe, which raises questions about its origin, path of introduction and dispersal means, while also highlighting the need to enhance surveillance systems by closely combining crowd-sourced surveillance with public health and mosquito control agencies’ efforts, from local to continental scales. This multi-actor approach for surveillance (either passive and active) shows high potential efficiency in the surveillance of other invasive mosquito species, and specifically the major vector Aedes aegypti which is already present in some parts of Europe. Graphical abstract


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 947
Author(s):  
Rishi Kondapaneni ◽  
Ashley N. Malcolm ◽  
Brian M. Vazquez ◽  
Eric Zeng ◽  
Tse-Yu Chen ◽  
...  

Florida lies within a subtropical region where the climate allows diverse mosquito species including invasive species to thrive year-round. As of 2021, there are currently 66 state-approved Florida Mosquito Control Districts, which are major stakeholders for Florida public universities engaged in mosquito research. Florida is one of the few states with extensive organized mosquito control programs. The Florida State Government and Florida Mosquito Control Districts have long histories of collaboration with research institutions. During fall 2020, we carried out a survey to collect baseline data on the current control priorities from Florida Mosquito Control Districts relating to (1) priority control species, (2) common adult and larval control methods, and (3) major research questions to address that will improve their control and surveillance programs. The survey data showed that a total of 17 distinct mosquito species were considered to be priority control targets, with many of these species being understudied. The most common control approaches included truck-mounted ultra-low-volume adulticiding and biopesticide-based larviciding. The districts held interest in diverse research questions, with many prioritizing studies on basic science questions to help develop evidence-based control strategies. Our data highlight the fact that mosquito control approaches and priorities differ greatly between districts and provide an important point of comparison for other regions investing in mosquito control, particularly those with similar ecological settings, and great diversity of potential mosquito vectors, such as in Florida. Our findings highlight a need for greater alignment of research priorities between mosquito control and mosquito research. In particular, we note a need to prioritize filling knowledge gaps relating to understudied mosquito species that have been implicated in arbovirus transmission.


2021 ◽  
Vol 82 (1) ◽  
Author(s):  
Michael Olarewaju Akintan ◽  
Joseph Onaolapo Akinneye ◽  
Oluwatosin Betty Ilelakinwa

Abstract Background Mosquitoes are vectors of parasitic diseases such as malaria, lymphatic filariasis, yellow fever, and dengue fever among others. They are well known as public enemies for their noise nuisance, biting annoyance, sleeplessness, allergic reactions, and diseases transmission during the biting and feeding activities. This then necessitate the search for insecticides of plant origin which are bio-degradable, non-toxic, and readily available for man use. Result This study, evaluated the fumigant efficacy of the powder of P. alliacea to control the adult stage of Culex mosquito. Powder of Petiveria alliacea were administered at different dose of (1 g, 2 g, 3 g, 4 g, and 5 g), respectively. Result obtained shows the fumigant effect of the powder were effective with percentage mortality of 18.33–60.00% for the leaf powder and 23.30–71.60% for the root powder within 2 h post-treatment period (P < 0.05). The synergistic effect of the leaf and root powder was also investigated. The lethal dosage (LD50) of the leaf, root, and synergistic effect of leaf and root bark powder required to kill 50% of the adult Culex quinquefasciatus was 3.76 g, 2.86 g, and 2.63 g, respectively. However, 25.06 g, 15.25 g, and 12.94 g of the leaf, root, and leaf and root powder were required to kill 90% (LD90) after a 2-h exposure period. Conclusion These finding suggested P. alliacea powder could be a good source of insecticide which may be used for the production of biopesticides. The present findings have important implications in the practical control of adult mosquito by using botanical insecticides. These plant powders are easy to prepare, inexpensive, and safe for use in mosquito control.


2020 ◽  
Author(s):  
Triwibowo Ambar Garjito ◽  
Lulus Susanti ◽  
Mujiyono Mujiyono ◽  
Mega Tyas Prihatin ◽  
Dwi Susilo ◽  
...  

Abstract BackgroundSeveral methods exist to collect and assess the abundance of dengue vector mosquitoes, i.e. morning adult collection using an aspirator, pupal collection, various ovitraps, whole night collection using human landing methods, and larval collection. This diversity of methods might be a source of variability and lack of statistical significance when trying to correlate mosquito density and risk of dengue outbreak. There is also a lack of published data regarding the effectiveness of these methods MethodsA mosquito survey was conducted in 39 locations corresponding to 15 dengue endemic provinces in Indonesia. The larval surveys were performed by collecting at least a single Aedes larva from each container, and then reared up until hatching. Three adult mosquito sampling methods were also used, including morning resting collection, human landing collection, animal baited trap. All field samples were tested for dengue. Factor Analysis of Mixed Data (FAMD) was conducted to analyze the effectiveness of the collection methods against mosquito species and dengue incidence.ResultsA total of 44,675 mosquitoes were collected. The single larva method was the most efficient method. Out of a total of 89 dengue-positive pools, the most frequently encountered virus was DENV2, which made up half of the positive samples, followed by DENV3 and DENV1, respectively. FAMD showed that no correlation could be found between any methods and the presence of dengue virus in mosquitoes. Moreover, no correlation could be found between either any methods or the incidence.ConclusionsThere was no concistency in the efficacy of a given method and the incidence of dengue in the human population. There was no correlation between any of the parameters considered, i.e. method, incidence of dengue, location and presence of dengue virus in mosquitoes. This indicates that entomological factors are not reliable indicators.


Author(s):  
Xun Kang ◽  
Yanhong Wang ◽  
Siping Li ◽  
Xiaomei Sun ◽  
Xiangyang Lu ◽  
...  

The midgut microbial community composition, structure, and function of field-collected mosquitoes may provide a way to exploit microbial function for mosquito-borne disease control. However, it is unclear how adult mosquitoes acquire their microbiome, how the microbiome affects life history traits and how the microbiome influences community structure. We analyzed the composition of 501 midgut bacterial communities from field-collected adult female mosquitoes, including Aedes albopictus, Aedes galloisi, Culex pallidothorax, Culex pipiens, Culex gelidus, and Armigeres subalbatus, across eight habitats using the HiSeq 4000 system and the V3−V4 hyper-variable region of 16S rRNA gene. After quality filtering and rarefaction, a total of 1421 operational taxonomic units, belonging to 29 phyla, 44 families, and 43 genera were identified. Proteobacteria (75.67%) were the most common phylum, followed by Firmicutes (10.38%), Bacteroidetes (6.87%), Thermi (4.60%), and Actinobacteria (1.58%). The genera Rickettsiaceae (33.00%), Enterobacteriaceae (20.27%), Enterococcaceae (7.49%), Aeromonadaceae (7.00%), Thermaceae (4.52%), and Moraxellaceae (4.31%) were dominant in the samples analyzed and accounted for 76.59% of the total genera. We characterized the midgut bacterial communities of six mosquito species in Hainan province, China. The gut bacterial communities were different in composition and abundance, among locations, for all mosquito species. There were significant differences in the gut microbial composition between some species and substantial variation in the gut microbiota between individuals of the same mosquito species. There was a marked variation in different mosquito gut microbiota within the same location. These results might be useful in the identification of microbial communities that could be exploited for disease control.


2019 ◽  
Vol 98 (8) ◽  
pp. 893-896
Author(s):  
Svetlana A. Roslavtseva

Mosquito control is necessary to improve the epidemic and, consequently, the sanitary and hygienic situation in human settlements. At the same time, the safest and more environmentally friendly way of controlling is not the fight against adult mosquitoes, but the treatment of reservoirs with microbiological larvicides based on entomopathogenic, aerobic, spore-forming, saprophytic bacteria Bacillus thuringiensis (de Barjac) (Bti). A new serotype of the bacterium B. thuringiensis was found in Israel in the Negev desert. This serotype being more active against larvae of blood-sucking and non-blood-sucking mosquitoes and midges than previously known serotypes, was named israelensis. Bti endotoxin is a typical insecticide with intestinal type of action for different mosquito species. For example, Bti H14 is highly insecticidal to the larvae of Aedes aegypti and Ae. albopictus at very low concentrations. The parasporal body (endotoxin crystal), a crystalline protein consisted of four main polypeptides and two minor polypeptides, possesses of a larvicidal action. Larvicidal activity is associated with a synergistic effect in a combination of four polypeptides. The possibility of development of resistance to products based on Bti and Bacillus sphaericus in populations of mosquitoes (Culicidae) was investigated. The use of domestic microbiological formulations based on Bti («Baktitsid», «Larviol-pasta», and «Antinat») was shown an eradication the larvae of bloodsucking mosquitoes and midges to be possible and rational, since they are not generated resistant populations of mosquitoes. This is confirmed by more than 30 years of the use of such formulations.


Sign in / Sign up

Export Citation Format

Share Document