scholarly journals Numerical Simulation on the Impact Damage of CFRP Laminates with Different Porosities

Author(s):  
Aying Zhang ◽  
Dongxing Zhang ◽  
Mingzhe Qu ◽  
Kai Yu
2006 ◽  
Vol 326-328 ◽  
pp. 1833-1836 ◽  
Author(s):  
Seung Min Jang ◽  
Tadaharu Adachi ◽  
Akihiko Yamaji

The development characteristics of impact-induced damage in carbon-fiber-reinforcedplastics (CFRP) laminates were experimentally studied using a drop-weight impact tester. Five types of CFRP laminates were used to investigate the effect of stacking sequences and thicknesses. The efficiency of absorbed energy to impact energy was different for CFRP laminates with different stacking sequences or thicknesses. The DA/AE ratio of delamination area (DA) to absorbed energy (AE) was almost the same for CFRP laminates with the same stacking sequence regardless of the thickness. We found that the DA/AE ratio could be used as a parameter to characterize the impact damage resistance in CFRP laminates with different stacking sequences.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fang Chen ◽  
Weixing Yao ◽  
Wen Jiang

Purpose The purpose of this paper is to synthetically investigate the impact damage responses of carbon fiber reinforced polymer (CFRP) and its influence on the compression mechanical responses of CFRP laminates, including damage distribution, residual compressive strength and fracture morphology. Design/methodology/approach A progressive damage simulation model is developed to analyze the complicated damage responses of CFRP laminates that are manufactured by resin transfer method (RTM) technology. Based on the ABAQUS/explicit finite element analysis solver, a VUMAT code is proposed to descript the composite materials’ damage behaviors under both impact and compression load. Adopting this proposed model, the primary mechanical indicators of four groups’ 5284RTM/U3160 CFRP laminates with different stacking sequences are predicted. Moreover, impact and compression after impact tests are conducted to verify the accuracy of simulation results. Findings Both simulation and experimental results show that the impact damage with low visible detectability can significantly reduce composites’ compressive strength. For all four groups’ composite laminates, the residual strength ratio is around 35% or even lower. The kernel impact damage near the plates’ geometric center promotes the degradation process of local materials and finally leads to the early occurrence of mechanical fracture. In addition, the impact damage projection area is not sensitive to the parameters of stacking sequences, while the residual compression strength is proportional to the number of 0-degree layers within whole laminates. Originality/value This study helps to understand the effect of an impact event on CFRP laminates’ compressive bearing capacity and provides a numerical method in simulating the damage responses under both impact and compression load.


2005 ◽  
Vol 297-300 ◽  
pp. 1339-1343 ◽  
Author(s):  
Gui Ping Zhao ◽  
Chong Du Cho ◽  
Oh Yang Kwon

In this paper, the energy absorption characteristics on extruded aluminum box-section strengthened with carbon-fiber-reinforced plastics (CFRP) laminates and/or foam material were investigated under impact loading. Impact tests using a pneumatic impact tester were conducted with the specimens in three-point bending flexure with consideration given to the side-door impact beams in vehicles. The absorbed energy to the specimen during the impact was determined from the loaddisplacement curve, which was obtained from the strain gauge attached to the impactor and the laser displacement transducer. From the results, it was found that the strengthening by externally bonding with CFRP laminates improved the impact-induced energy absorption. Also, the effect of the improvement was clearly seen in the case of the use of filling form material in the aluminum extrusion together with attaching CFRP laminates.


2021 ◽  
Vol 260 ◽  
pp. 03021
Author(s):  
Jun He ◽  
Meng Cao ◽  
Zhishu Wang ◽  
Fanglin Cong

Although the carbon fiber reinforced composite material has high specific strength and stiffness, design-versatility, anti-corrosion and other excellent features, but the impact resistance of composite structures is poor. Therefore, the composite laminates low-speed damage analysis has important significance. Based on a three-dimensional analysis theory of cumulative damage, using the commercial finite element analysis software ABAQUS to establish laminates subjected to low velocity impact finite element model. according to the numerical results and the consistency of the test results, shows that the used model of the article is reasonable and accurate, and the numerical simulation method is verified to be feasible. Finally, through the numerical simulation of process of laminated plates low speed impact damage, the damage characteristics and damage mechanism of the laminates at different times are analyzed, and the forming reasons and expanding rules of the main damage forms of fiber damage and matrix damage are revealed.


2012 ◽  
Vol 225 ◽  
pp. 189-194
Author(s):  
Mohamed Thariq Hameed Sultan ◽  
Azmin Shakrine M. Rafie ◽  
Noorfaizal Yidris ◽  
Faizal Mustapha ◽  
Dayang Laila Majid

Signal processing is an important element used for identifying damage in any SHM-related application. The method here is used to extract features from the use of different types of sensors, of which there are many. The responses from the sensors are also interpreted to classify the location and severity of the damage. This paper describes the signal processing approaches used for detecting the impact locations and monitoring the responses of impact damage. Further explanations are also given on the most widely-used software tools for damage detection and identification implemented throughout this research work. A brief introduction to these signal processing tools, together with some previous work related to impact damage detection, are presented and discussed in this paper.


2014 ◽  
Vol 887-888 ◽  
pp. 850-853
Author(s):  
A Ying Zhang ◽  
Han Xiong Lv ◽  
Ye Zhang ◽  
Dong Xing Zhang

The effects of the impact energy on the impact damage of CFRP laminates were studied in this paper. Impact tests for the CFRP laminates with the size of 600 mm×700 mm were subjected to different the impact energy levels from 5 J to 50 J. The matrix length was investigated according to different energy levels. The experimental results reveal that the crack length increases linearly with the increasing impact energy. The impact damage of CFRP laminates tends to be more severe as impact energy increases, and the impact area and crater depth increases with increasing impact energy. The surface of impact dent of specimen looks like W shape.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 395
Author(s):  
Ziang Wei ◽  
Henrique Fernandes ◽  
Hans-Georg Herrmann ◽  
Jose Ricardo Tarpani ◽  
Ahmad Osman

Advanced materials such as continuous carbon fiber-reinforced thermoplastic (CFRP) laminates are commonly used in many industries, mainly because of their strength, stiffness to weight ratio, toughness, weldability, and repairability. Structural components working in harsh environments such as satellites are permanently exposed to some sort of damage during their lifetimes. To detect and characterize these damages, non-destructive testing and evaluation techniques are essential tools, especially for composite materials. In this study, artificial intelligence was applied in combination with infrared thermography to detected and segment impact damage on curved laminates that were previously submitted to a severe thermal stress cycles and subsequent ballistic impacts. Segmentation was performed on both mid-wave and long-wave infrared sequences obtained simultaneously during pulsed thermography experiments by means of a deep neural network. A deep neural network was trained for each wavelength. Both networks generated satisfactory results. The model trained with mid-wave images achieved an F1-score of 92.74% and the model trained with long-wave images achieved an F1-score of 87.39%.


Materials ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 2525 ◽  
Author(s):  
Xiang Liu ◽  
Weimin Gu ◽  
Qiwen Liu ◽  
Xin Lai ◽  
Lisheng Liu

The influence of hygrothermal aging on high-velocity impact damage of carbon fiber-reinforced polymer (CFRP) laminates is investigated. Composite laminate specimens were preconditioned in water at 70 °C. The laminates were subsequently impacted by flat-, sphere-, and cone- ended projectiles with velocities of 45, 68, and 86 m/s. The incident and residual velocities were collected during the impact test. The impact-induced damages were measured by ultrasonic C-scan, a digital microscope system, and a scanning electron microscope. The results show that the hygrothermally conditioned laminates offer a higher energy absorption during high-velocity impact. Due to the weakening of the interlaminar properties, the hygrothermally conditioned laminates are more susceptible to delamination failure, and shear-induced debonding dominates. The projected delamination area increases with the increment of impact velocity. The damaged region becomes close to a circular shape after hydrothermal conditioning, and close to a rhomboidal shape for the dry specimens.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1060-1063
Author(s):  
A Ying Zhang ◽  
Dong Xing Zhang

The effects of thickness and impact energy on the impact damage of CFRP laminates were studied in this paper. Impact tests for the CFRP laminates with the size of 600 mm×700 mm with five different thicknesses were subjected to impact fatigue loading at different energy levels from 5 J to 65 J. The crater depth and matrix length were investigated according to different energy levels and different thicknesses. The impact damage was evaluated by visual inspection, three-dimensional microscope. The experimental results reveal that the crater depth and the crack length increase with the increasing impact energy. For the same impact energy, the crater depth and the crack length decreased with the increasing thickness of specimens.


Sign in / Sign up

Export Citation Format

Share Document