FLEXURAL CAPACITY FOR RC BEAMS WITH EXPOSED REINFORCEMENT

2018 ◽  
Vol 9 (3) ◽  
pp. 180-200
Author(s):  
Rizgar Amin ◽  
Keyword(s):  
Rc Beams ◽  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Long Liu ◽  
Lifeng Wang ◽  
Ziwang Xiao

PurposeReinforcement of reinforced concrete (RC) beams in-service have always been an important research field, anchoring steel plate in the bottom of the beams is a kind of common reinforcement methods. In actual engineering, the contribution of pavement layer to the bearing capacity of RC beams is often ignored, which underestimates the bearing capacity and stiffness of RC beams to a certain extent. The purpose of this paper is to study the effect of pavement layer on the RC beams before and after reinforcement.Design/methodology/approachFirst, static load experiments are carried out on three in-service RC hollow slab beams, meanwhile, nonlinear finite element models are built to study the bearing capacity of them. The nonlinear material and shear slip effect of studs are considered in the models. Second, the finite element models are verified, and the numerical simulation results are in good agreement with the experimental results. Last, the finite element models are adopted to carry out the research on the influence of different steel plate thicknesses on the flexural bearing capacity and ductility.FindingsThe experimental results showed that pavement layers increase the flexural capacity of hollow slab beams by 16.7%, and contribute to increasing stiffness. Ductility ratio of SPRCB3 and PRCB2 was 30% and 24% lower than that of RCB1, respectively. The results showed that when the steel plate thickness was 1 mm–6 mm, the bearing capacity of the hollow slab beam increased gradually from 2158.0 kN.m to 2656.6 kN.m. As the steel plate thickness continuously increased to 8 mm, the ultimate bearing capacity increased to 2681.0 kN.m. The increased thickness did not cause difference to the bearing capacity, because of concrete crushing at the upper edge.Originality/valueIn this paper, based on the experimental study, the bearing capacity of hollow beam strengthened by steel plate with different thickness is extrapolated by finite element simulation, and its influence on ductility is discussed. This method not only guarantees the accuracy of the bearing capacity evaluation, but also does not require a large number of samples, and has certain economy. The research results provide a basis for the reinforcement design of similar bridges.


2011 ◽  
Vol 268-270 ◽  
pp. 659-663
Author(s):  
Hua Chen ◽  
Kan Kang ◽  
Lang Ni Deng

The method of applying prestress to CFRP plates can make full use of the characteristics of high-strength, enhance the force properties, prevent peeling damage and reduce the strain lag. Construction technology of prestressed CFRP plates strengthening reinforcement concrete beams was introduce in this paper, and bending test of 6 reinforcement concrete beams strengthened with prestressed CFRP plates were carried out based on the self-developed prestressed CFRP plates supporting anchorages. The test results indicate that the flexural capacity and crack resistance capacity can be increased compared with non-prestressed CFRP plates, and the construction technology can be adopted in practical projects.


Author(s):  
Nabil Al-Akhras ◽  
Walid Al-Kutti ◽  
Abdulaziz Aljaber

Twelve prototype rectangular RC beams (120 x 150 x 1000 mm) were constructed and evaluated using flexural test to investigate the employment of advanced composites in repairing corroded reinforced concrete (RC) beams. Three concrete mixtures with effective w/c ratio of 0.4 and cement content of 370 kg/m3 were utilized in the study: control ordinary Portland cement concrete, silica fume (SF) and ground granulated blast furnace slag (GGBFS) concrete mixes. The RC beams (reinforced with two steel bars having diameter of 12 mm) were immersed (after 28 days of curing) in 2.5% NaCl solution and exposed to accelerated corrosion process using impressed electrical current. The corroded RC beams were repaired using advanced composite of carbon fiber reinforced polymer (CFRP) sheets. The CFRP sheets measuring 300-mm width by 0.131-mm thickness were used to rehabilitate and restore the mechanical behavior of the corroded and damaged RC beams. The investigation results confirmed that the corrosion of steel reinforcement caused significant deterioration and reduction of flexural capacity. The corroded SF and GGBFS beams showed higher flexural capacity compared to the corroded OPC beams. The repaired SF and GGBFS beams showed higher ductility and performance gain in the flexural capacity compared to the repaired OPC beams.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Kyusan Jung ◽  
Kinam Hong ◽  
Sanghoon Han ◽  
Jaekyu Park ◽  
Jaehyun Kim

This paper presents both experimental and analytical research results for predicting the flexural capacity of reinforced concrete (RC) beams strengthened in flexure with fabric reinforced cementitious matrix (FRCM). In order to assess the efficiency of the FRCM-strengthening method, six beams were strengthened in flexure with FRCM composite having different amounts and layers of FRP fabric and were tested under four-point loading. From test results, it was confirmed that the slippage between the FRP fabric and matrix occurs at a high strain level, and all of the FRCM-strengthened beams failed by the debonding of the FRCM. Additionally, a new bond strength model for FRCM considering the slippage between fabric and matrix was proposed, using a test database to predict the strengthening performance of the FRCM composite. The prediction of the proposed bond strength model agreed well with the debonding loads of the test database.


2012 ◽  
Vol 587 ◽  
pp. 36-41 ◽  
Author(s):  
S.F.A. Rafeeqi ◽  
S.U. Khan ◽  
N.S. Zafar ◽  
T. Ayub

In this paper, behaviour of nine (09) RC beams (including two control beams) after unbonding and exposing flexural reinforcement has been studied which were intentionally designed and detailed to observe flexural and shear failure. Beams have been divided into three groups based on failure mode and unbounded and exposed reinforcement. Beams have been tested under two-point loading up to failure. Experimental results are compared in terms of beam behaviour with respect to flexural capacity and failure mode which revealed that the exposed reinforcement does not altered flexural capacity significantly and unbondedness positively influences shear strength; however, serviceability performance of beams with unbonded and exposed reinforcement is less.


2019 ◽  
Vol 46 (9) ◽  
pp. 796-809 ◽  
Author(s):  
Mohammed A. Zaki ◽  
Hayder A. Rasheed

Utilizing fiber reinforced polymer (FRP) anchors can enhance the strength and delay the debonding of flexural FRP in strengthened reinforced concrete (RC) beams. In this study, two different techniques are used for applying carbon FRP (CFRP) spike anchors to improve the performance of RC beams strengthened with CFRP sheets. These two techniques are compared with respect to the ease of application, time spent, size of installation team, and performance. The first technique involved applying the CFRP anchors to begin with, then installing CFRP sheets by separating the fibers at the location of anchors. The second technique applied the CFRP sheets first to the beam soffit right after drilling the holes. This was followed by inserting CFRP anchors through the sheets into the prepared holes. The conclusion indicates that the second technique is easier, faster, and more practical in real-world applications. In addition, the use of distributed CFRP anchors increased the flexural capacity of the strengthened beams.


Author(s):  
Bin Cai ◽  
Bo Li ◽  
Feng Fu

Abstract Fire tests and subsequent bending tests of four reinforced concrete (RC) beams were performed. Based on these tests, the post-fire performance of RC beams was further studied using finite-element simulation through reasonable selection of suitable thermal and thermodynamic parameters of steel and concrete materials. A thermodynamic model of RC beams with three sides under fire was built using finite-element analysis (FEA) software ABAQUS. The FEA model was validated with the results of fire tests. Different factors were taken into account for further parametric studies in fire using the propsed FE model. The results show that the main factors affecting the fire resistance of the beams are the thickness of the concrete cover, reinforcement ratio of longitudinal steel, the fire exposure time and the fire exposure sides. Based on the strength reduction formula at high temperature of steel and concrete and four test results, an improved section method was proposed to develop a calculation formula to calculate the flexural capacity of RC beams after fire. The theoretical calculation method proposed in this paper shows good agreement with FEA results, which can be used to calculate the flexural capacity of RC beams after fire.


2019 ◽  
Vol 9 (8) ◽  
pp. 923-930
Author(s):  
Ning Zhuang ◽  
Junzhou Chen ◽  
Miao Zheng ◽  
Da Chen

Flexural capacity of RC beams gets significant improvement with externally bonded Carbon Fiber-reinforced Polymer (CFRP) sheet. The anchorage system is a valid means to restrain or delay debonding failure caused by stress concentration at the ends of CFRP sheets. In this paper, four RC beams, measuring 150 × 200 × 1900 mm, were examined under four-point bending test. One beam was applied for contrast. And other three were CFRP strengthened with no anchorage, CF anchors (carbon fiber anchors) and U-wraps (U-shaped CFRP wraps). The primary purpose of the experiment was to validate the effectiveness of CF anchors and U-wraps in improving the flexure character of beams strengthened with CFRP sheets. The experimental results revealed that the strengthened beams using anchorage systems performed remarkably in beam ductility, flexural capacity, load-deflection response and failure mode compared with the contrast beam. The anchorage systems were more effective and necessary to enhance the flexural behavior of beams as using CFRP laminates for flexural strengthening.


Sign in / Sign up

Export Citation Format

Share Document