scholarly journals Rethinking the (near) future of postwar built environment: a systemic approach through façades-only replacement

Rivista Tema ◽  
2020 ◽  
Vol Vol.6 (2020) (N. 1) ◽  
Author(s):  
Paolo Piantanida ◽  
Antonio Vottari

There is a noticeable portion of the Italian building stock, typically concentrated in suburban areas, whose performance obsolescence and vulnerability are worsening its value and urban image as well. Even though a large-scale construction replacement seems to be apparently the expected way to solve the problem, current global strategies towards the built environment demand different approaches. The paper identifies envelope replacement as a systemic and feasible tactic to extend the service life of such target buildings and to enhance their resilience towards climate change and users’ needs, also with positive fallouts for the environment and urban image.

2021 ◽  
Author(s):  
◽  
Ralph Peter Titmuss

<p>As a result of climate change, extreme weather events are becoming more common around the world. Coupled with the ever-present threat of sea level rise that coastal cities face there is a potential for far more severe weather events to occur. This thesis will seek to understand how an existing city can adapt to a more hostile environment, and how in the event of an extreme weather occurrence it maintains its function. There is an urgent need to understand how a city can respond when faced with these situations. Previous extreme weather events, Katrina, the Indian Ocean tsunami, and extreme flooding around the world, highlight the danger of a lack of preparedness and resilience found in most cities.  The purpose of this thesis is to understand how the concept of a core shelter, as a way to address the threats of extreme weather events, can be applied to a well-established urban context, Wellington NZ. A core shelter is a structure that in the event of a large-scale disaster, protects its users, and post-disaster still reaches permanent housing standards without being deemed to be a permanent dwelling. It will also look at whether it is possible to create areas in an existing city that can be considered “safe havens” in the event of an extreme natural incident.  This thesis outlines the need for these shelters by identifying the potential threats of climate change in a Wellington context, and by understanding the vulnerability of Wellington’s current building stock. It reaches a conclusion that through the implementation of core shelters in Wellington NZ, resilience will be improved, disaster response efforts will be aided, and destruction arising from extreme weather events will be reduced. In addition, it identifies the areas of Wellington that are deemed to be of higher risk in a disaster or extreme weather event, analyses an existing building’s potential to become a community resilience/core shelter, and proposes a custom building that could be built on Leeds St and Ghuznee St.</p>


Author(s):  
Huaping Wang

Structural performance is the most important index to declare the stability, safety and durability of structures in practical engineering. The performance degradation of structures becomes more and more common with the increase of service life. To ensure the safe operation of structures, the hot research has gradually changed from large-scale construction to the detection, repair, reinforcement, renovation and maintenance.


2019 ◽  
Vol 37 (5) ◽  
pp. 679-698 ◽  
Author(s):  
Toni A. Pakkala ◽  
Arto Köliö ◽  
Jukka Lahdensivu ◽  
Matti Pentti

PurposeA significant part of Finnish concrete building stock is relatively young. Thus methods to adopt the existing building stock to climate change are needed. To plan and correctly timing the service actions there is a need to study the rates of different deterioration mechanisms. The reinforcement corrosion in Finnish outdoor exposed concrete structures is almost solely carbonation-induced corrosion. In former studies, it has been shown that active corrosion phase can also have a major effect on the total service life of the structure. The paper aims to discuss these issues.Design/methodology/approachIn this study, the effect of climate change on predicted corrosion rate of concrete reinforcement in projected 2050 and 2100 climates compared to present climate were studied to consider adaptation methods for the climate change. The calculations are based on a corrosion propagation model, which takes into account four different climatic factors: wind-driven rain, temperature, relative humidity and solar radiation.FindingsA significantly higher corrosion rates and thus faster corrosion-induced damage can be expected in the future climate. The increase in corrosion rate is the highest in the late autumn and winter because of the increasing amount of precipitation and weaker conditions for concrete structures to dry. In addition, the duration of high corrosion rate periods is increasing which may shorten the propagation phase. However, corrosion rate is highly dependent on the direction of the greatest climate load and the grade of sheltering which can be taken into account in service life calculations and while planning service actions.Research limitations/implicationsThere are different sources of error because of the uncertainties with both the used model and the climate change scenarios. That is why the results are discussed in more general way than comparing the actual numbers with each other.Originality/valueThe propagation model used in this study has not been used before in adaptation studies. The climate change effect on carbonation-induced corrosion has also been limited while the studies have focused on chloride-induced corrosion.


2020 ◽  
Vol 11 (3-4) ◽  
pp. 330-352 ◽  
Author(s):  
Henrik Hovland Svensen ◽  
Marit Ruge Bjærke ◽  
Kyrre Kverndokk

During the past decades, notions of Earth dynamics and climate change have changed drastically, as anthropogenic CO2-emissions are linked to measurable Earth system changes. At the same time, Earth scientists have discovered deep time climate changes triggered by large scale and natural release of CO2. As the understanding of past climatic changes improved, they were used to envision what might happen in the near future. This article explores the use of deep time climate examples by analyzing publications on a 56-million-year-old greenhouse gas-driven rapid global warming event, the Paleocene-Eocene Thermal Maximum (PETM). We explore how the PETM is framed and used as an example of “extreme climatic warming” in four cases across different scientific genres. The scientific knowledge about the PETM is considered too uncertain to draw conclusions from, but our analysis shows that, by being presented as an example, the PETM may still contribute to the scientific understanding of ongoing climate change. Although the PETM is regarded as too uncertain to guide present day climate change modeling, it is still considered morally significant, and is allowed to influence public opinion and policy making. We argue that the PETM is used as an example in ways that have formal similarities with the early modern historia magistra vitae topos. The PETM example highlights the ambivalence that characterizes the Anthropocene as a temporal conception. The Anthropocene is “completely different”, but at the same time pointing to the similarity between the present and the deep past, thereby allowing for comparison to past geological events. Thus, the Anthropocene is not so “completely different” after all. Just a little bigger, a lot faster, and a lot scarier to humans.


2021 ◽  
Author(s):  
◽  
Ralph Peter Titmuss

<p>As a result of climate change, extreme weather events are becoming more common around the world. Coupled with the ever-present threat of sea level rise that coastal cities face there is a potential for far more severe weather events to occur. This thesis will seek to understand how an existing city can adapt to a more hostile environment, and how in the event of an extreme weather occurrence it maintains its function. There is an urgent need to understand how a city can respond when faced with these situations. Previous extreme weather events, Katrina, the Indian Ocean tsunami, and extreme flooding around the world, highlight the danger of a lack of preparedness and resilience found in most cities.  The purpose of this thesis is to understand how the concept of a core shelter, as a way to address the threats of extreme weather events, can be applied to a well-established urban context, Wellington NZ. A core shelter is a structure that in the event of a large-scale disaster, protects its users, and post-disaster still reaches permanent housing standards without being deemed to be a permanent dwelling. It will also look at whether it is possible to create areas in an existing city that can be considered “safe havens” in the event of an extreme natural incident.  This thesis outlines the need for these shelters by identifying the potential threats of climate change in a Wellington context, and by understanding the vulnerability of Wellington’s current building stock. It reaches a conclusion that through the implementation of core shelters in Wellington NZ, resilience will be improved, disaster response efforts will be aided, and destruction arising from extreme weather events will be reduced. In addition, it identifies the areas of Wellington that are deemed to be of higher risk in a disaster or extreme weather event, analyses an existing building’s potential to become a community resilience/core shelter, and proposes a custom building that could be built on Leeds St and Ghuznee St.</p>


2000 ◽  
Vol 151 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Stephan Wild-Eck ◽  
Willi Zimmermann

Two large-scale surveys looking at attitudes towards forests, forestry and forest policy in the second half ofthe nineties have been carried out. This work was done on behalf of the Swiss Confederation by the Chair of Forest Policy and Forest Economics of the Federal Institute of Technology (ETH) in Zurich. Not only did the two studies use very different methods, but the results also varied greatly as far as infrastructure and basic conditions were concerned. One of the main differences between the two studies was the fact that the first dealt only with mountainous areas, whereas the second was carried out on the whole Swiss population. The results of the studies reflect these differences:each produced its own specific findings. Where the same (or similar) questions were asked, the answers highlight not only how the attitudes of those questioned differ, but also views that they hold in common. Both surveys showed positive attitudes towards forests in general, as well as a deep-seated appreciation ofthe forest as a recreational area, and a positive approach to tending. Detailed results of the two surveys will be available in the near future.


2020 ◽  
Vol 12 (20) ◽  
pp. 8369
Author(s):  
Mohammad Rahimi

In this Opinion, the importance of public awareness to design solutions to mitigate climate change issues is highlighted. A large-scale acknowledgment of the climate change consequences has great potential to build social momentum. Momentum, in turn, builds motivation and demand, which can be leveraged to develop a multi-scale strategy to tackle the issue. The pursuit of public awareness is a valuable addition to the scientific approach to addressing climate change issues. The Opinion is concluded by providing strategies on how to effectively raise public awareness on climate change-related topics through an integrated, well-connected network of mavens (e.g., scientists) and connectors (e.g., social media influencers).


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


Sign in / Sign up

Export Citation Format

Share Document