scholarly journals Design and Implementation of a Wireless System to Locate a User in Indoor Environments

2020 ◽  
Vol 38 (11A) ◽  
pp. 1640-1651
Author(s):  
Amnah A. Kareem ◽  
Wissam H. Ali ◽  
Manal H. Jasim

The technology of indoor positioning has pulled in the consideration of researchers the expanding capability of smartphones and the advancement of sensor innovation, alongside the increase the time people spend working inside the building or being indoors. Sensor innovation, which is one of the most generally utilized information hotspots for indoor setting, has a favorable position that sensors can receive information from a cell phone without introducing any additional device. The idea of the proposed system is to use the Wi-Fi access points, inside the building, together with a Smartphone Wi-Fi sensor which lets the building administrator locate those carrying smartphones, wherever they exist inside the building. The proposed system consists of two-stage the testing stage (or preparation phase) and, the second stage is the training stage (or positioning phase). The data is collected and selected for accurate readings; a router is used, which is the Mikrotik access point type from which we can read the RSS value. The RSS value represents the Wi-Fi signal strength of the target device. The proposed IPS detection system is independent and can work in unconstrained environments. The database used to measure the performance of the proposed IPS detection system is collected from 14 locations (different in size). The number of readings obtained from the collected database is 1199 readings consist of received signal strength value from five access points. The proposed IPS accuracy is 96.8595% and the mean error is about 1.2 meters are achieved when using, K-Nearest Neighbor (K-NN), used the...

2019 ◽  
Vol 15 (7) ◽  
pp. 155014771986613 ◽  
Author(s):  
Dong Myung Lee ◽  
Boney Labinghisa

In indoor positioning techniques, Wi-Fi is one of the most used technology because of its availability and cost-effectiveness. Access points are usually the main source of Wi-Fi signals in an indoor environment. If access points are optimized to cover the indoor area, this could improve Wi-Fi signal distribution. This article proposed an alternative to optimizing access point placement and distribution by introducing virtual access points that can be virtually placed in any part of the indoor environment without installation of actual access points. Virtual access points will be created heuristically by correlating received signal strength indicator of already existing access points and through linear regression. After introducing virtual access points in the indoor environment, next will be the addition of filters to improve signal fluctuation and reduce noise interference. Kalman filter has been previously used together with virtual access point and showed improvement by decreasing error distance of Wi-Fi fingerprinting results. This article also aims to include particle filter in the system to further improve localization and test its effectiveness when paired with Kalman filter. The performance testing of the algorithm in different indoor environments resulted in 3.18 and 3.59 m error distances. An improvement was added on the system by using relative distances instead of received signal strength indicator values in distance estimation and gave an error distance average of 1.85 m.


Author(s):  
Raemon Syaljumairi ◽  
Sarjon Defit ◽  
S Sumijan ◽  
Yusma Elda

Teknologi wireless saat ini bisa dimanfaatkan untuk menentukan posisi pengguna di dalam ruangan. Pemanfaatan sinyal strength WiFi dari Access Point (AP) bisa memberikan informasi posisi pengguna yang berada di dalam ruangan. Alternatif penentuan posisi pengguna di dalam ruangan menggunakan Receive Signal Strength (RSS) WiFi. Penelitian ini dilakukan untuk mengkalasifikasian jarak Euclidean Distance antara data training dengan data testing pengguna terhadap hotspot dengan mengukur tingkat akurasi pengklasifikasian jarak pengguna dengan hotspot menggunakan metode K-Nearest Neighbour. Penelitian ini dilakukan dengan membandingkan jarak antar pengguna terhadap 2 atau lebih AP menggunakan Teknik Euclidean Distance. Teknik Euclidean Distance digunakan sebagai kalkulator jarak dimana ada dua titik dalam bidang 3 dimensi dengan mengukur panjang segmen yang menghubungkan dua titik. Teknik ini paling baik untuk merepresentasikan jarak antara pengguna terhadap AP. Pengumpulan data RSS menggunakan teknik Fingerprinting. Data RSS tersebut dikumpulkan dari 20 AP yang terdeteksi menggunakan aplikasi wifi analizer, dari hasil scanning tersebut didapatkan data RSS sebanyak 709 data RSS. Nilai RSS tersebut dijadikan sebagai data training. K-Nearest Neighbor (KNN) saat mengelompokkan data uji yang baru yang digunakan adalah neighbourhood clasification sehingga K-NN mampu mengklasifikasikan jarak terdekat dari data uji yang baru dengan nilai data training yang ada. Berdasarkan hasil pengujian diperoleh tingkat akurasi sebesar 95% dengan K adalah 3. Berdasarkan hasil penelitian yang telah dilakukan bahwa dengan menggunakan metode K-NN diperoleh persentase tertinggi pada k = 3 sebesar 95% dan nilai error minimum sebesar 5%


Author(s):  
S. Vijaya Rani ◽  
G. N. K. Suresh Babu

The illegal hackers  penetrate the servers and networks of corporate and financial institutions to gain money and extract vital information. The hacking varies from one computing system to many system. They gain access by sending malicious packets in the network through virus, worms, Trojan horses etc. The hackers scan a network through various tools and collect information of network and host. Hence it is very much essential to detect the attacks as they enter into a network. The methods  available for intrusion detection are Naive Bayes, Decision tree, Support Vector Machine, K-Nearest Neighbor, Artificial Neural Networks. A neural network consists of processing units in complex manner and able to store information and make it functional for use. It acts like human brain and takes knowledge from the environment through training and learning process. Many algorithms are available for learning process This work carry out research on analysis of malicious packets and predicting the error rate in detection of injured packets through artificial neural network algorithms.


Author(s):  
M. Ilayaraja ◽  
S. Hemalatha ◽  
P. Manickam ◽  
K. Sathesh Kumar ◽  
K. Shankar

Cloud computing is characterized as the arrangement of assets or administrations accessible through the web to the clients on their request by cloud providers. It communicates everything as administrations over the web in view of the client request, for example operating system, organize equipment, storage, assets, and software. Nowadays, Intrusion Detection System (IDS) plays a powerful system, which deals with the influence of experts to get actions when the system is hacked under some intrusions. Most intrusion detection frameworks are created in light of machine learning strategies. Since the datasets, this utilized as a part of intrusion detection is Knowledge Discovery in Database (KDD). In this paper detect or classify the intruded data utilizing Machine Learning (ML) with the MapReduce model. The primary face considers Hadoop MapReduce model to reduce the extent of database ideal weight decided for reducer model and second stage utilizing Decision Tree (DT) classifier to detect the data. This DT classifier comprises utilizing an appropriate classifier to decide the class labels for the non-homogeneous leaf nodes. The decision tree fragment gives a coarse section profile while the leaf level classifier can give data about the qualities that influence the label inside a portion. From the proposed result accuracy for detection is 96.21% contrasted with existing classifiers, for example, Neural Network (NN), Naive Bayes (NB) and K Nearest Neighbor (KNN).


Author(s):  
Aishwarya Priyadarshini ◽  
Sanhita Mishra ◽  
Debani Prasad Mishra ◽  
Surender Reddy Salkuti ◽  
Ramakanta Mohanty

<p>Nowadays, fraudulent or deceitful activities associated with financial transactions, predominantly using credit cards have been increasing at an alarming rate and are one of the most prevalent activities in finance industries, corporate companies, and other government organizations. It is therefore essential to incorporate a fraud detection system that mainly consists of intelligent fraud detection techniques to keep in view the consumer and clients’ welfare alike. Numerous fraud detection procedures, techniques, and systems in literature have been implemented by employing a myriad of intelligent techniques including algorithms and frameworks to detect fraudulent and deceitful transactions. This paper initially analyses the data through exploratory data analysis and then proposes various classification models that are implemented using intelligent soft computing techniques to predictively classify fraudulent credit card transactions. Classification algorithms such as K-Nearest neighbor (K-NN), decision tree, random forest (RF), and logistic regression (LR) have been implemented to critically evaluate their performances. The proposed model is computationally efficient, light-weight and can be used for credit card fraudulent transaction detection with better accuracy.</p>


Author(s):  
Qing Yang ◽  
Shijue Zheng ◽  
Ming Liu ◽  
Yawen Zhang

AbstractTo improve the management of science and technology museums, this paper conducts an in-depth study on Wi-Fi (wireless fidelity) indoor positioning based on mobile terminals and applies this technology to the indoor positioning of a science and technology museum. The location fingerprint algorithm is used to study the offline acquisition and online positioning stages. The positioning flow of the location fingerprint algorithm is discussed, and the improvement of the location fingerprint algorithm is emphasized. The raw data of the RSSI (received signal strength indication) is preprocessed, which makes the location fingerprint data more effective and reliable, thus improving the positioning accuracy. Three different improvement strategies are proposed for the nearest neighbor classification algorithm: a balanced joint metric based on distance weighting and a compromise between the two. Then, in the experimental simulation, the positioning results and errors of the traditional KNN (k-nearest neighbor) algorithm and three improvement strategy algorithms are analyzed separately, and the effectiveness of the three improved strategy algorithms is verified by experiments.


2015 ◽  
Vol 77 (9) ◽  
Author(s):  
Iyad H Alshami ◽  
Noor Azurati Ahmad ◽  
Shamsul Sahibuddin

In order to enable Location Based Service (LBS) closed environment, many technologies have been investigated to replace the Global Positioning System (GPS) in the localization process in indoor environments. WLAN is considered as the most suitable and powerful technology for Indoor Positioning System (IPS) due to its widespread coverage and low cost. Although WLAN Received Signal Strength Indicator (RSS) fingerprinting can be considered as the most accurate IPS method, this accuracy can be weakened due to WLAN RSS fluctuation. WLAN RSS fluctuates due to the multipath being influenced by obstacles presence. People presence under WLAN coverage can be considered as one of the main obstacles which can affect the WLAN-IPS accuracy. This research presents experimental results demonstrating that people’s presence between access point (AP) and mobile device (MD) reduces the received signal strength by -2dBm to -5dBm. This reduction in RSS can lead to distance error greater than or equal to 2m. Hence, any accurate IPS must consider the presence of people in the indoor environment. 


Author(s):  
Faisal Dharma Adhinata ◽  
Diovianto Putra Rakhmadani ◽  
Danur Wijayanto

Background: The COVID-19 pandemic has made people spend more time on online meetings more than ever. The prolonged time looking at the monitor may cause fatigue, which can subsequently impact the mental and physical health. A fatigue detection system is needed to monitor the Internet users well-being. Previous research related to the fatigue detection system used a fuzzy system, but the accuracy was below 85%. In this research, machine learning is used to improve accuracy.Objective: This research examines the combination of the FaceNet algorithm with either k-nearest neighbor (K-NN) or multiclass support vector machine (SVM) to improve the accuracy.Methods: In this study, we used the UTA-RLDD dataset. The features used for fatigue detection come from the face, so the dataset is segmented using the Haar Cascades method, which is then resized. The feature extraction process uses FaceNet's pre-trained algorithm. The extracted features are classified into three classes—focused, unfocused, and fatigue—using the K-NN or multiclass SVM method.Results: The combination between the FaceNet algorithm and K-NN, with a value of  resulted in a better accuracy than the FaceNet algorithm with multiclass SVM with the polynomial kernel (at 94.68% and 89.87% respectively). The processing speed of both combinations of methods has allowed for real-time data processing.Conclusion: This research provides an overview of methods for early fatigue detection while working at the computer so that we can limit staring at the computer screen too long and switch places to maintain the health of our eyes. 


2022 ◽  
Vol 14 (2) ◽  
pp. 297
Author(s):  
Jingxue Bi ◽  
Hongji Cao ◽  
Yunjia Wang ◽  
Guoqiang Zheng ◽  
Keqiang Liu ◽  
...  

A density-based spatial clustering of applications with noise (DBSCAN) and three distances (TD) integrated Wi-Fi positioning algorithm was proposed, aiming to enhance the positioning accuracy and stability of fingerprinting by the dynamic selection of signal-domain distance to obtain reliable nearest reference points (RPs). Two stages were included in this algorithm. One was the offline stage, where the offline fingerprint database was constructed and the other was the online positioning stage. Three distances (Euclidean distance, Manhattan distance, and cosine distance), DBSCAN, and high-resolution distance selection principle were combined to obtain more reliable nearest RPs and optimal signal-domain distance in the online stage. Fused distance, the fusion of position-domain and signal-domain distances, was applied for DBSCAN to generate the clustering results, considering both the spatial structure and signal strength of RPs. Based on the principle that the higher resolution the distance, the more clusters will be obtained, the high-resolution distance was used to compute positioning results. The weighted K-nearest neighbor (WKNN) considering signal-domain distance selection was used to estimate positions. Two scenarios were selected as test areas; a complex-layout room (Scenario A) for post-graduates and a typical large indoor environment (Scenario B) covering 3200 m2. In both Scenarios A and B, compared with support vector machine (SVM), Gaussian process regression (GPR) and rank algorithms, the improvement rates of positioning accuracy and stability of the proposed algorithm were up to 60.44 and 60.93%, respectively. Experimental results show that the proposed algorithm has a better positioning performance in complex and large indoor environments.


Information ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 397
Author(s):  
Yan Zhang ◽  
Shiyun Wa ◽  
Pengshuo Sun ◽  
Yaojun Wang

To address the current situation, in which pear defect detection is still based on a workforce with low efficiency, we propose the use of the CNN model to detect pear defects. Since it is challenging to obtain defect images in the implementation process, a deep convolutional adversarial generation network was used to augment the defect images. As the experimental results indicated, the detection accuracy of the proposed method on the 3000 validation set was as high as 97.35%. Variant mainstream CNNs were compared to evaluate the model’s performance thoroughly, and the top performer was selected to conduct further comparative experiments with traditional machine learning methods, such as support vector machine algorithm, random forest algorithm, and k-nearest neighbor clustering algorithm. Moreover, the other two varieties of pears that have not been trained were chosen to validate the robustness and generalization capability of the model. The validation results illustrated that the proposed method is more accurate than the commonly used algorithms for pear defect detection. It is robust enough to be generalized well to other datasets. In order to allow the method proposed in this paper to be applied in agriculture, an intelligent pear defect detection system was built based on an iOS device.


Sign in / Sign up

Export Citation Format

Share Document