scholarly journals Effect of ZrO2 Addition on Microstructure and Mechanical Properties of Al-Zn-Mg Alloy Matrix Composite

2020 ◽  
Vol 38 (12A) ◽  
pp. 1751-1757
Author(s):  
Israa A. Aziz ◽  
Russul S. Bedien

Aluminum – based metal matrix composite are widely used in industrial   applications compared with conventional and unreinforced alloy. The composite materials usually exhibit a higher strength both at elevated and ambient temperature, as well as wear resistance. The production of composite materials which contain different weight percentage of ZrO2 (0.5, 1.5 and 2.5wt %) by stir casting process. The mechanical properties of the base alloy and composite were evaluated   by using   tensile and hardness tests. The microstructure inspection by optical microscopy, scanning electron microscope and energy dispersive spectroscopy (EDS) were utilized to study the fracture surface topography. The results represent that the hardness, strength of yield and tensile strength increased with increasing the weight % of ZrO2 to 2.5 % while the elongation decreased. The microstructure inspection by optical microscope shows that the dendrites structure and the particles distribution in matrix without any voids. Furthermore, the grain size refining with the weight percentage of weight reinforcement elevated.                         

Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1767
Author(s):  
Yuhong Jiao ◽  
Jianfeng Zhu ◽  
Xuelin Li ◽  
Chunjie Shi ◽  
Bo Lu ◽  
...  

Al matrix composite, reinforced with the in situ synthesized 3C–SiC, MgAl2O4, and MgO grains, was produced via the casting process using phenolic resin pyrolysis products in flash mode. The contents and microstructure of the composites’ fracture characteristics were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Mechanical properties were tested by universal testing machine. Owing to the strong propulsion formed in turbulent flow in the pyrolysis process, nano-ceramic grains were formed in the resin pyrolysis process and simultaneously were homogeneously scattered in the alloy matrix. Thermodynamic calculation supported that the gas products, as carbon and oxygen sources, had a different chemical activity on in situ growth. In addition, ceramic (3C–SiC, MgAl2O4, and MgO) grains have discrepant contents. Resin pyrolysis in the molten alloy decreased oxide slag but increased pores in the alloy matrix. Tensile strength (142.6 ± 3.5 MPa) had no change due to the cooperative action of increased pores and fine grains; the bending and compression strength was increasing under increased contents of ceramic grains; the maximum bending strength was 378.2 MPa in 1.5% resin-added samples; and the maximum compression strength was 299.4 MPa. Lath-shaped Si was the primary effect factor of mechanical properties. The failure mechanism was controlled by transcrystalline rupture mechanism. We explain that the effects of the ceramic grains formed in the hot process at the condition of the resin exist in mold or other accessory materials. Meanwhile, a novel ceramic-reinforced Al matrix was provided. The organic gas was an excellent source of carbon, nitrogen, and oxygen to in situ ceramic grains in Al alloy.


Author(s):  
Amneesh Singla ◽  
Rajnish Garg ◽  
Mukesh Saxena

A 356 alloy reinforced with insitu V2O5 particles by using stir casting technique. The composites were produced by the addition of oxide particles in different weight percentage. The effect of oxide powder addition on microstructure and mechanical properties of produced composites were investigated. The effect of heat treatment on microstructure and mechanical properties were investigated by optical microscope, Microhardness tester and tension test. A significant improvement in hardness and tensile strength was revealed in the produced composite as compared to the base alloy. With the addition of oxide particles, the shape and size of eutectic Si changed which in turn affects the properties. It was observed that 2h solutionizing followed by the artificial aging was sufficient to make the structure homogenize and to produce the hardening precipitates. The improvement in the mechanical properties has been observed due to the age hardening precipitates in addition with refinement of insitu V2O5 particles.


2020 ◽  
Vol 20 (10) ◽  
pp. 6482-6488
Author(s):  
Hansang Kwon ◽  
Mart Saarna ◽  
Marc Leparoux

Nano-silicon carbide (nSiC) particle-reinforced aluminium (Al) 6061 alloy matrix composites were fabricated by high-energy ball milling, hot-pressing (HP), and hot-forging (HF). The composite powders were degassed and the composites were synthesised under air and/or vacuum. Mechanical properties of the obtained composite materials were evaluated using various tests, including indentation, compression, four-point bending, and tensile tests as well as by microstructural observations. Different amounts of nSiC were added and the mechanical properties of the obtained composite materials were measured and discussed. The microstructures of the composites depended on the nSiC content and synthesis conditions. The Vickers hardness and tensile strength values of the nSiC reinforced Al 6061 composites were approximately three times higher than that of a pure Al 6061 alloy bulk. The results demonstrated that the small amount of nSiC particles functioned as efficient reinforcement material in the Al 6061 alloy matrix composite material and that the strength and ductility of the composite material can be controlled by adjusting the processing parameters and nSiC content.


2020 ◽  
Vol 1001 ◽  
pp. 196-201
Author(s):  
Yi Si ◽  
D.S. Kevluzov

The cast Al-Mg2Si metal matrix composite was prepared by metal model casting process with rare earth element Nd as the modificator. The effects of modification duration and remelting times on microstructure and mechanical properties of the composite were investicated by optical microscope (OM) and electronic universal testing machine. The results show that, after introducing a proper amount of Nd, both primary and eutectic Mg2Si in the Al-18 wt.%Mg2Si composite were well modified. The morphology of primary Mg2Si is changed from irregular or dendritic to polyhedral shape and the morphology of the eutectic Mg2Si phase is altered from flake-like to very short fibrous or dot-like. Moreover, the effect is of long-lasting and remelting properties. After the composite is modified for 300 min and remelted by 6 times, its primary and eutectic Mg2Si structures are still in modification state of small block and slices, and the tensile properties of the composite are not significantly affected.


Aluminium metal matrix composite with a combination of Al6061 as base matrix and B4C as particulate up to 0 to 3% by weight in the steps of 1 wt% is manufactured by liquid metallurgy method by stir casting process. The choice of the process has been concluded from the literature survey and is tabulated. The steps involved in the processing of composite have been reported in detail. A conventional stir casting technique and the steps followed are recorded. The different process parameters controlled during the process have been reported. With the processing of the composite, the chemical stability between the particulate and the alloy matrix as known from its properties has been ascertained. The addition of wettability agent and thus its effect has been discussed. The optical microscope images of the processed composite have been presented in the paper as an indication to successful fabrication of composite. Based on the images, distribution of particulates in matrix alloy and possible reasons for this to get exhibited have been discussed. The paper aims at bridging the gap of essentials of wetting of solid particulates and the practice of casting.


2022 ◽  
Vol 1048 ◽  
pp. 33-42
Author(s):  
Ippey Gopi lakshmi ◽  
Yajjala Ravi Kanth ◽  
Jinugu Babu Rao

Present studies are based on adding ferrochrome slag as reinforcement in AA 7075 alloy manufactured via the stir casting process. Two different slag particles are chosen; they are 36μm (Micro) and 68 nm (Nano). This was added to evaluate the size effects in the given alloy matrix. The composites were tested for unique microstructural properties and mechanical properties. The results Revealed uniform particle distribution within the matrix and good bonding between the matrix and the reinforcement. Better mechanical properties are obtained for both micro and nanocomposites than base alloy. This is further enhanced by ageing treatments. nanocomposites show superior mechanical properties than either alloy or micro composite. Interestingly, nanocomposite exhibits an increase in strength with good ductility; same is confirmed with fracture studies.


2021 ◽  
Vol 58 (1) ◽  
pp. 3076-3088
Author(s):  
Dr. Israa A. Al. Kadir Hanan K. Azeez

The aims of thiswork is to investigate the effect of adding different weight percents of TiO2 and SiC 1.5:0,3:0, 4.5:0, 0:1.5, 0:3, 0:4.5, 1.5:1.5, 3:3, 4.5:4.5 particulate reinforcement on the mechanical properties andmicrostructure properties of base alloy Al-Mg-Si.By stir casting process, base alloy and hybrid composites were developed.  By using stiffness and tensile measures, the mechanistic properties of the basic alloy and hybrid composites were calculated.The topography of fracture surfaces was inspected using the scanning electron microscope (ESM) and energy dispersive spectroscopy ( EDS).The findings shows, with a weight rise of 4.5% by the TIO2 / SIC up to 4.5%, Improved absolute tensile power, strength of output and hardness. In contrast, the elongationrate is decreased, The optical microscope inspection shows that the particles in the matrix without any valves are distributed evenly. The X-Ray diffraction manifested the presence of different phases and intermetallic compounds Mg5Si6, Mg2Si, Al2O3, Mg6Si3.3., Al3Mg2 and Al3Ti.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 875
Author(s):  
Hao Tian ◽  
Jianchao He ◽  
Jinbao Hou ◽  
Yanlong Lv

TiB crystal whiskers (TiBw) can be synthesized in situ in Ti alloy matrix through powder metallurgy for the preparation of a new type of ceramic fiber-reinforced Ti matrix composite (TMC) TiBw/Ti-6Al-4V. In the TiBw/Ti-6Al-4V TMC, the reinforced phase/matrix interface is clean and has superior comprehensive mechanical properties, but its machinability is degraded. Hence, the bonding of reliable materials is important. To further optimize the TiBw/Ti-6Al-4V brazing technology and determine the relationship between the microstructure and tensile property of the brazed joint, results demonstrate that the elements of brazing filler metal are under sufficient and uniform diffusion, the microstructure is the typical Widmanstätten structure, and fine granular compounds in β phase are observed. The average tensile strength of the brazing specimen is 998 MPa under room temperature, which is 97.3% of that of the base metal. During the high-temperature (400 °C) tensile process, a fracture occurred at the base metal of the highest tensile test specimen with strength reaching 689 MPa, and the tensile fracture involved a combination of intergranular and transgranular modes at both room temperature and 400 °C. The fracture surface has dimples, secondary cracks are generated by the fracture of TiB whiskers, and large holes form when whole TiB whiskers are removed. The proposed algorithm provides evidence for promoting the application of TiBw/Ti-6Al-4V TMCs in practical production.


Sign in / Sign up

Export Citation Format

Share Document