scholarly journals Microstructure and Mechanical Properties of Al-Mg-Si Hybrid Composites Reinforced with SiC/TiO2

2021 ◽  
Vol 58 (1) ◽  
pp. 3076-3088
Author(s):  
Dr. Israa A. Al. Kadir Hanan K. Azeez

The aims of thiswork is to investigate the effect of adding different weight percents of TiO2 and SiC 1.5:0,3:0, 4.5:0, 0:1.5, 0:3, 0:4.5, 1.5:1.5, 3:3, 4.5:4.5 particulate reinforcement on the mechanical properties andmicrostructure properties of base alloy Al-Mg-Si.By stir casting process, base alloy and hybrid composites were developed.  By using stiffness and tensile measures, the mechanistic properties of the basic alloy and hybrid composites were calculated.The topography of fracture surfaces was inspected using the scanning electron microscope (ESM) and energy dispersive spectroscopy ( EDS).The findings shows, with a weight rise of 4.5% by the TIO2 / SIC up to 4.5%, Improved absolute tensile power, strength of output and hardness. In contrast, the elongationrate is decreased, The optical microscope inspection shows that the particles in the matrix without any valves are distributed evenly. The X-Ray diffraction manifested the presence of different phases and intermetallic compounds Mg5Si6, Mg2Si, Al2O3, Mg6Si3.3., Al3Mg2 and Al3Ti.

2019 ◽  
Vol 54 (7) ◽  
pp. 981-997
Author(s):  
Semegn Cheneke ◽  
D Benny Karunakar

In this research, microstructure and mechanical properties of stir rheocast AA2024/TiB2 metal matrix composite have been investigated. The working temperature was 640℃, which was the selected semisolid temperature that corresponds to 40% of the solid fraction. Two weight percentage, 4 wt%, and 6 wt% of the TiB2 reinforcements were added to the matrix. The field emission scanning electron microscope micrographs of the developed composites showed a uniform distribution of the particles in the case of the 2 wt% and 4 wt% of the reinforcements. However, the particles agglomerated as the weight percentages of the reinforcement increases to 6%. The optical microscope of the liquid cast sample showed the dendritic structure, whereas the rheocast samples showed a globular structure. The X-ray diffraction analysis confirmed the distribution of the reinforcements in the matrix and the formation of some intermetallic compounds. Mechanical properties significantly improved by the addition of the reinforcements in the matrix. An increase in tensile strength of 13.3%, 40%, 28%, and 5% was achieved for the unreinforced rheocast sample, 2 wt%, 4 wt%, and 6 wt% reinforced rheocast samples respectively, compared to the liquid cast sample. An increase in 20% of hardness was attained for the composite with 2 wt% TiB2 compared to the liquid cast sample. According to the fractography analysis, small dimples were observed on the fractured surface of the unreinforced rheocast sample, whereas small and large voids were dominant on the fractured surface of the 2 wt% composite, which shows the ductile fracture mode.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rajesh Kumar Bhushan

PurposeMechanical properties are highly sensitive to the microstructure, and these are indirectly related to solidification parameters and processing conditions. AA7075 possesses lightweight and excellent properties as structural material which can be optimized with SiCp addition and a good fabrication technique.Design/methodology/approach7000 series aluminium alloys exhibit the highest mechanical properties. They are used for high-strength structural applications such as aircraft parts and sporting goods. The desirable properties of these alloys are: low density, high stiffness, specific strength, good wear resistance and creep resistance. The focus of this work is to investigate the microstructure of composites formed by the dispersion of silicon carbide particles (SiC) into AA7075 by stir casting processes. 7075 Al alloy is reinforced with 10 and 15 wt.% SiCp of size 10–20 µm by stir casting process. The composites have been characterized by X-ray diffraction and scanning electron microscopy, differential thermal analysis and electron probe microscopic analysis.FindingsSiCp distribution and interaction with AA7075 matrix have been studied. AA7075/10 wt.%/SiCp (10–20 µm) and AA7075/15 wt.%/SiCp (10–20 µm) composites microstructure showed excellent SiCp distribution into AA7075 matrix. In addition, no evidence of secondary chemical reactions has been observed in X-ray diffraction and electron probe microscopic analysis.Originality/valueLittle experimental work has been reported so far about effect of addition of 10 and 15 wt.% SiCp of size (10–20 µm) on the microstructure of 7075 Al alloy fabricated by stir casting process. The present investigation has been carried out to study the microstructure and carry out XRD, DTA and EPMA analysis of 7075 Al alloy, 10 and 15 wt.% SiCp of size (10–20 µm) composite and detect the interfacial reactions with the objective to minimize the formation of Al4C3.


2015 ◽  
Vol 15 (4) ◽  
pp. 339-343 ◽  
Author(s):  
Bhargavi Rebba ◽  
N. Ramanaiah

AbstractThe results of an experimental investigation of the mechanical properties of boron carbide (B4C) and molybdenum disulphide (MoS2) reinforced aluminium alloy (AA2024) hybrid composite samples, processed by stir casting process are reported in this paper. Based on the previous studies, it was concluded that for 4% of weight of the B4C powders reinforced in AA2024 metal matrix have better mechanical properties like tensile strength and hardness than the base alloy. Also the 4% of MoS2 reinforced in AA2024 metal matrix exhibited good mechanical properties than the matrix metal. Hence an attempt has been made to further improve the properties of the composite using both B4C and MoS2 as reinforcement particles in the AA2024 matrix. in the present study hybrid composite specimen were developed varying the weight% of B4C and MoS2, viz., 1%+3%, 2%+2%, 3%+1% B4C and MoS2 respectively in the AA2024 matrix. The prepared samples were subjected to a series of mechanical tests like tensile and hardness tests. Further, SEM & XRD analyses were performed on the prepared samples to study the microstructure and to ensure the proper dispersion of the reinforced particles in the metal matrix.


2014 ◽  
Vol 704 ◽  
pp. 32-38
Author(s):  
Lanka Rasidhar ◽  
A. Rama Krishna ◽  
Ch. Srinivasa Rao ◽  
K. Vijaya Lakshmi

In the present investigation, microstructure and mechanical properties of nanocomposites fabricated via stir casting were evaluated. The composites were based on Al (99.7) reinforced with ilmenite nanoparticles. The characterization of the nanoparticles and nanocomposites was investigated by scanning electron microscopy (SEM) and X-ray diffraction (XRD) facilities. Microstructure of specimens show that reasonable distribution of FeTiO3 nanoparticles in the matrix, secondary phase FeAl3 observed in the microstructure. Ultimate tensile strength and compression tests were carried out in order to identify the mechanical properties. The hardness of the composites is enhanced with the addition of nanoparticles. The optimum value for ultimate tensile and compression strength are obtained with the addition of 3 % ilmenite nanoparticles. Ductile fracture in tensile fractured samples was observed by fractrography examination.


2022 ◽  
Vol 1048 ◽  
pp. 33-42
Author(s):  
Ippey Gopi lakshmi ◽  
Yajjala Ravi Kanth ◽  
Jinugu Babu Rao

Present studies are based on adding ferrochrome slag as reinforcement in AA 7075 alloy manufactured via the stir casting process. Two different slag particles are chosen; they are 36μm (Micro) and 68 nm (Nano). This was added to evaluate the size effects in the given alloy matrix. The composites were tested for unique microstructural properties and mechanical properties. The results Revealed uniform particle distribution within the matrix and good bonding between the matrix and the reinforcement. Better mechanical properties are obtained for both micro and nanocomposites than base alloy. This is further enhanced by ageing treatments. nanocomposites show superior mechanical properties than either alloy or micro composite. Interestingly, nanocomposite exhibits an increase in strength with good ductility; same is confirmed with fracture studies.


The present work was planned to evaluate the mechanical properties of alumina reinforced aluminium alloy such hardness and compression behavior of al2o3 /aa7075 alloy metal matrix composites. Both, experimental and finite element analyses were carried out to establish tensile behaviour of the composites with different weight percentage of al2o3 fabricated by the stir casting process. The results concluded that addition of alumina to the aa7075 improves the mechanical properties of the composite. Further the results of FEA simulation of the composites are close to the actual results which shows that cost and time can be reduced if FEA is performed


2019 ◽  
Vol 130 ◽  
pp. 01005
Author(s):  
Cindy Retno Putri ◽  
Anne Zulfia Syahrial ◽  
Salahuddin Yunus ◽  
Budi Wahyu Utomo

The goal of this research is to improve the mechanical properties such as strength, hardness and wear resistance for automotive application such as brake shoe and bearings due to high cycle, load and impact during their usage. Therefore, another alloying element or reinforcement addition is necessary. In this work, the composites are made by ADC 12 (Al-Si aluminum alloy) as the matrix and reinforced with micro SiC through stir casting process and TiB is added various from (0.04, 0.06, 0.15, 0.3 and 0.5) wt.% that act as grain refiners and 5 wt.% of Mg is added to improve the wettability of the composites. The addition of TiB improves the mechanical properties because the grain becomes finer and uniform, and the addition of Mg makes the matrix and reinforce have better adhesion. The results obtained that the optimum composition was found by adding 0.15 wt.% of TiB with tensile strength improve from 98 MPa to 136.3 MPa, hardness from 35 to 53 HRB and wear rate reduced from 0.006 2 mm3 s−1 to 0.002 3 mm3 s−1 respectively.


Author(s):  
Amneesh Singla ◽  
Rajnish Garg ◽  
Mukesh Saxena

A 356 alloy reinforced with insitu V2O5 particles by using stir casting technique. The composites were produced by the addition of oxide particles in different weight percentage. The effect of oxide powder addition on microstructure and mechanical properties of produced composites were investigated. The effect of heat treatment on microstructure and mechanical properties were investigated by optical microscope, Microhardness tester and tension test. A significant improvement in hardness and tensile strength was revealed in the produced composite as compared to the base alloy. With the addition of oxide particles, the shape and size of eutectic Si changed which in turn affects the properties. It was observed that 2h solutionizing followed by the artificial aging was sufficient to make the structure homogenize and to produce the hardening precipitates. The improvement in the mechanical properties has been observed due to the age hardening precipitates in addition with refinement of insitu V2O5 particles.


2007 ◽  
Vol 546-549 ◽  
pp. 257-260 ◽  
Author(s):  
Zhen Yan Zhang ◽  
Li Ming Peng ◽  
Xiao Qin Zeng ◽  
Lin Du ◽  
Lan Ma ◽  
...  

Effects of extrusion on mechanical properties and damping capacity of Mg-1.8wt.%Cu -0.5wt.%Mn (MCM1805) alloy have been investigated. Tensile tests and dynamic mechanical analyzer were respectively used to measure tensile properties and damping capacity at room temperature of as-cast and as-extruded MCM1805 alloy. The microstructure was studied using optical microscope, X-ray diffraction and scanning electron microscope with an energy dispersive X-ray spectrometer. Granato-Lücke model was used to explain the influences of extrusion on damping capacity of MCM1805 alloy. The results showed that extrusion dramatically decreases the grain size but has little influence on phase composition and solute atoms concentration of MCM1805 alloy, and the grain refinement was the dominant reason for the obvious increase of tensile properties and decrease of internal friction of MCM1805 alloy.


Materials ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1620
Author(s):  
Xiaomin Yuan ◽  
Haonan Zhu ◽  
Huiling Ji ◽  
Yiwei Zhang

Carbon nanotubes (CNTs), dispersed in absolute ethanol, were evenly mixed into Ti/MgH2 powders by wet milling. Then, we applied the vacuum hot-pressed sinteringmethod to the CNTs/TiMg composite materials. An optical microscope (OM), X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and a field emission scanning electron microscope (FESEM) were used for the microstructure observation and phase analysis of samples. The mechanical properties were measured via the micro-vickers hardness. The results show that the main phases in the composites were Ti, Mg and C. Meanwhile, a small amount of Ti-Mg solid solution phase was also found. The cross-section morphology of the composites shows that the melted magnesium fills the grain interface during extrusion and that the composites have a better compactness.The microstructures of the composites have been greatly refined as the CNT contents increased. The structure of the composites was further refined when 0.5 wt.% CNTs were added. The fracture surface is obviously a ductile fracture. The microhardness increases obviously with the CNT content increasing. When the content of the CNTs is 1.0 wt.%, the microhardness of the composites reaches 232 HV, which is 24% higher than that of the matrix.


Sign in / Sign up

Export Citation Format

Share Document