scholarly journals Studying the spectral properties of thin films of rhodamine (6G) dyes doped polymer (PMMA) dissolved in chloroform

2019 ◽  
Vol 12 (23) ◽  
pp. 59-64
Author(s):  
Ali H. Al-Hamdani

              In the present work, poly methyl methacrylate (PMMA) doped with Rhodamine 6G was prepared. The spectral properties (absorption and fluorescence) of the films were studied at different concentrations (1x10-5, 2x10-5, 5x10-5, 7x10-5, and 1x10-4mol/l). The investigated samples were made in the form of thin films. This was achieved by dissolving a certain weight of PMMA in a fixed volume of chloroform, composite films was with thickness (25.8μm) at room temperature. The achieved results were pointed out that absorption and fluorescence spectra have taken a wide spectral rang so when increased the concentration each peak shift toward along wavelength. The quantum efficiency of the films were calculated as follows (98%,89%,84%,83% and 76%) for the above concentrations respectively. It has been noticed that the quantum efficiency decreases as the concentrations increases.

2019 ◽  
Vol 16 (3(Suppl.)) ◽  
pp. 0764 ◽  
Author(s):  
Al-Hamdani Et al.

            The research is dealing with the absorption and fluorescence spectra for the hybrid of  an Epoxy Resin doped with organic dye Rhodamine (R6G) of different concentrations (5*10-6, 5*10-5, 1*10-5, 1*10-4, 5*10-4) Mol/ℓ at room temperature. The Quantum efficiency Qfm, the rate of fluorescence emission Kfm (s-1), the non-radiative lifetime τfm (s), fluorescence lifetime τf and the Stokes shift were calculated. Also the energy gap (Eg) for each dye concentration was evaluated. The results showed that the maximum quantum efficiency 62 % and maximum stokes shift 96 nm was obtained in dye concentration 5*10-6 and 1*10-4. The energy gap ranges between 1.066 eV to 1.128 eV depending proportionally on the dye concentrations.


2003 ◽  
Vol 785 ◽  
Author(s):  
Quan Ren ◽  
Dong Xu ◽  
Yuktak Chow ◽  
Hauping Chan ◽  
Paklim Chu

ABSTRACTNovel nanocrystals and polymer composite thin films for the applications of electro-optical devices were prepared. We used PbTiO3 nanocrystals as a nonlinear chromophore (guest) in the NLO polymer system. The transparent polymer polyetherketone (PEK-c) was chosen as the polymer host due to its high glass transition temperature. The PbTiO3 nanocrystals were synthesized successfully by the chemical solution decomposition method. The size of the PbTiO3 nanocrystals was estimated to be 30–40 nm. The weight ratio of PbTiO3 nanocrystals to polymer polyetherketone was 15 %. The composite thin films of PbTiO3 / PEK-c were prepared by spin-coating technique. The films were then electrically poled to induce asymmetry in the material by heating the films to a temperature close to their glass transition and applying an electric field. The refractive indices of the un-poled composite PbTiO3 / PEK-c film were found to be 1.55165 for 633 nm and 1.65352 for 414 nm by using the Metricon prism coupling system. In the poled composite PbTiO3 / PEK-c film sample, the TE- and TM-indices differences were found to be 0.02945 for 633 nm and 0.03915 for 414 nm, showing very good optical anisotropy properties. Dielectric constant ε of the film was determined to be 7.32 at room temperature at 100 KHz using an Impedance Analyzer. The electro-optic coefficient, γ33, of poled PbTiO3 / PEK-c composite film was measured to be 18.34 pm/Vat 633 nm under room temperature by the simple transmission technique. The factor F2 = n7 γ2 /ε, figures of merit, was estimated to be 1546. The relaxation time constant was calculated to be 5836 min.


2013 ◽  
Vol 543 ◽  
pp. 373-376 ◽  
Author(s):  
Nurul Huda Yusoff ◽  
Muhamad Mat Salleh ◽  
Muhammad Yahaya

Room temperature fluorescence gas sensor was developed based on TiO2 nanoparticles coated with porphyrin dye thin films. The porphyrin dye used for this experiment were Iron (III) meso-tetraphenylporphine chloride (IMTPPCl) and Manganase (III) 5,10,15,20 tetra (4-pyridyl)-21H, 23H porphine chloride tetrakis (metachloride). The sensing sensitivity was due to the changes of the emission spectra produce by the thin film when expose to the organic vapors from volatile organic compounds; ethanol, acetone and 2-propanol. Both thin films show good response toward volatile organic vapors. However, TiO2 nanoparticles with porphyrin; IMTPPCl thin film shows pronounced interaction, marked fluorescence spectra and more selective property, hence useful for chemical identification purpose.


1994 ◽  
Vol 359 ◽  
Author(s):  
Tsung-I Lin ◽  
Syh-Kun Lin ◽  
Lung-Lin Shiu ◽  
Kuo-Ming Chien ◽  
Tien-Yau Luh

ABSTRACTFive cyclic adducts C60C4H6, C60C5H6, C60NHCO2, C60NCO2Et, and C60CHCO2Et have been synthesized and their absorption and fluorescence spectral properties investigated and compared with those of the parent. Breaking the structural symmetry of C60 apparently resulted in enhancing the quantum yield two to three-folds in some adducts and thus made fluorescence much easier to be measured at room temperature. New absorption bands and altered fluorescence spectra were observed in the adducts. The Stokes' shifts of the adducts were small, about 4-5 nrm, compared to 68 nm for the parent compound. All the adducts exhibited a single fluorescence lifetime about the same as C60 (ca. 1.3 ns). Aliphatic solvents had little influence on the absorption or fluorescence spectral profile except on the molar absorptivity whereas aromatic and polar solvents strongly interacted with the adducts causing a peak broadening effect.


2006 ◽  
Vol 514-516 ◽  
pp. 1161-1165 ◽  
Author(s):  
Raluca Savu ◽  
Ednan Joanni

Nanocrystalline indium tin oxide (ITO) thin films were deposited on Si/SiO2 substrates by laser ablation from a ceramic target with a composition of 0.9 In2O3 . 0.1 SnO2. Samples were prepared in the pressure range from 10-1 to 5mbar, either in-situ at 500°C or at room temperature and heat-treated in air at 500°C. X-ray diffraction results show that the films are not oriented, except the ones made at high temperature which exhibit strong (400) orientation. AFM pictures show that the grains are round shaped and the sizes are in the range between 50 and 200nm, except for films made in-situ at 10-1mbar which are elongated and faceted. For higher pressures the grains tend to be small and to form agglomerates. The porosity of the films increases with the deposition pressure and the thicknesses reach a maximum of 2.8µm at 1mbar for the films made at room temperature and of 1.2µm at 2mbar for the ones made in-situ; for higher pressures the growth rate drop drastically, as revealed from SEM observations of cross-sections. The electrical resistance increases with the deposition pressure due to the increase in porosity, changing from 3.3k to 38.9M for films deposited at room temperature and from 20 to 265k for the ones made in-situ.


2014 ◽  
Vol 11 (2) ◽  
pp. 635-640
Author(s):  
Baghdad Science Journal

The spectral propetties (absorption and fluorescence) of Coumarine-47 laser dye have been studied. This type of laser dye belong the Coumarine family and it has dissolved in chloroform at different concentrations (1x10-5, 5x10-5, and 1x10-4 M) at room temperature. The achieved results have been pointed out to increase in the absorption and fluorescence as the concentration increased which are agreements with Beer – Lambert law. These have been also showed an expansion in the spectral range of absorption and fluorescence with a noticed shift in the direction of longer wavelength (Red-shift) with increasing concentration. The quantum efficiency of the dissolved C47 in chloroform has been computed by using the brevious concentrations and their results are as follows (69%, 63%, and 45%) respectively. The radiative and fluorescence lifetime have been also computed as given (6.47ns, 4.67ns, and 2.06ns) and (4,07ns, 3.22ns, and 1.47ns) respectively.


2012 ◽  
Vol 9 (2) ◽  
pp. 352-358 ◽  
Author(s):  
Baghdad Science Journal

The effect of ethanol and methanol solvent, and their mixture has been studied on the absorption and fluorescence spectra of laser dye Rhodamine B at concentration of (10-4) Molar at room temperature. The molar absorption coefficient has been determined for mixture which was (3.223) at wave number (18181.8 cm-1), Also the Quantum Efficiency of the two solvents (ethanol and methanol) and their mixture have been calculated ,which was for mixture spectrum (38.94%) and it was larger comparing with other and solvents. The characteristics of spectrum has been determined by calculating (??) of absorption spectrum for the solvents and its mixture at maximum wave number ( ) cm-1 depending on solvent polarity and the transitions between molecular energy levels in each solvent of Rhodamine B dye .


Author(s):  
R. C. Moretz ◽  
G. G. Hausner ◽  
D. F. Parsons

Use of the electron microscope to examine wet objects is possible due to the small mass thickness of the equilibrium pressure of water vapor at room temperature. Previous attempts to examine hydrated biological objects and water itself used a chamber consisting of two small apertures sealed by two thin films. Extensive work in our laboratory showed that such films have an 80% failure rate when wet. Using the principle of differential pumping of the microscope column, we can use open apertures in place of thin film windows.Fig. 1 shows the modified Siemens la specimen chamber with the connections to the water supply and the auxiliary pumping station. A mechanical pump is connected to the vapor supply via a 100μ aperture to maintain steady-state conditions.


Author(s):  
R. M. Anderson ◽  
T. M. Reith ◽  
M. J. Sullivan ◽  
E. K. Brandis

Thin films of aluminum or aluminum-silicon can be used in conjunction with thin films of chromium in integrated electronic circuits. For some applications, these films exhibit undesirable reactions; in particular, intermetallic formation below 500 C must be inhibited or prevented. The Al films, being the principal current carriers in interconnective metal applications, are usually much thicker than the Cr; so one might expect Al-rich intermetallics to form when the processing temperature goes out of control. Unfortunately, the JCPDS and the literature do not contain enough data on the Al-rich phases CrAl7 and Cr2Al11, and the determination of these data was a secondary aim of this work.To define a matrix of Cr-Al diffusion couples, Cr-Al films were deposited with two sets of variables: Al or Al-Si, and broken vacuum or single pumpdown. All films were deposited on 2-1/4-inch thermally oxidized Si substrates. A 500-Å layer of Cr was deposited at 120 Å/min on substrates at room temperature, in a vacuum system that had been pumped to 2 x 10-6 Torr. Then, with or without vacuum break, a 1000-Å layer of Al or Al-Si was deposited at 35 Å/s, with the substrates still at room temperature.


Author(s):  
S.K. Streiffer ◽  
C.B. Eom ◽  
J.C. Bravman ◽  
T.H. Geballet

The study of very thin (<15 nm) YBa2Cu3O7−δ (YBCO) films is necessary both for investigating the nucleation and growth of films of this material and for achieving a better understanding of multilayer structures incorporating such thin YBCO regions. We have used transmission electron microscopy to examine ultra-thin films grown on MgO substrates by single-target, off-axis magnetron sputtering; details of the deposition process have been reported elsewhere. Briefly, polished MgO substrates were attached to a block placed at 90° to the sputtering target and heated to 650 °C. The sputtering was performed in 10 mtorr oxygen and 40 mtorr argon with an rf power of 125 watts. After deposition, the chamber was vented to 500 torr oxygen and allowed to cool to room temperature. Because of YBCO’s susceptibility to environmental degradation and oxygen loss, the technique of Xi, et al. was followed and a protective overlayer of amorphous YBCO was deposited on the just-grown films.


Sign in / Sign up

Export Citation Format

Share Document