scholarly journals Effect of sulfuric acid solution on thermal conductivity and impact strength of epoxy resin reinforced by silicon dioxide powder

2019 ◽  
Vol 17 (41) ◽  
pp. 82-90
Author(s):  
Baraa Khalil Ibrahim

In this search, Ep/SiO2 at (3, 6, 9, 12 %) composites is prepared by hand Lay-up method, to measure the change in the thermal conductivity and Impact Strength of epoxy resin before and after immersion in H2SO4 Solution with a 0.3N for 10 days. The results before immersion decreases with the increase of the weight ratios of the reinforcement material (SiO2), It changed from (82.6×10-2 to 38.7×10-2 W/m.°C) with change weight ratios from (3 to 12) % respectively, but after immersion time in the chemical solution where it was (65.6×10-2 W/m.°C) at the weight ratios (6 %) and became (46.6 × 10-2 W/m.°C) after immersion in sulfuric acid. The results of the Impact strength decreased by increasing the percentage weight ratio, it changed from (1.48 to 0.87 kJ/m2) with change weight ratios from (3 to 12) % respectively, but found an increase in the value of Impact Strength after immersion in the chemical solution Where it was (1.28 kJ/m2) at the weight ratio of 6 % and became (1.82 kJ/m2) at the same weight ratio after immersion in sulfuric acid at normality of 0.3 for 10 days.

2019 ◽  
Vol 16 (39) ◽  
pp. 93-102
Author(s):  
Baraa Khalil Ibrahim

In this paper, a polymer-based composite material was prepared by hand Lay-up method consisting of epoxy resin as a base material reinforced by magnesium oxide powder once and silicon dioxide powder again and with different weight ratios (3, 6, 9 and 12) wt %. The three-point bending test was performed in normal conditions and after immersion in sulfuric acid. The results showed that the bending value decreased with the increase of the weighted ratio of the reinforcement material (MgO, SiO2). The Bending of samples reinforced by SiO2 was found to be less than the bending of samples reinforced by particles (MgO). For example, the bending of the SiO2 sample (0.32 mm) at the weighted ratio (3%) and for the MgO (0.18mm) sample at the weight ratio were the same weighted load (100 g). It was found that the bending values of all samples exceeded the value after immersion in sulfuric acid. For example, the percentage of weight (6%) at the load level (500 g) was changed from 1.16 mm in normal conditions to 1.48mm for the same weight ratio after immersion. In sulfuric acid diluted with 0.3N for 10 days at the same applied load.


2019 ◽  
Vol 58 (4) ◽  
pp. 98-101
Author(s):  
Vladimir Yu. Chukhlanov ◽  
◽  
Kirill V. Smirnov ◽  
Natalia V. Chukhlanova ◽  
◽  
...  

In this article the physical-mechanical, thermal and electrical properties of spheroplastic based on epoxy resin ED-20 and hollow phenol-formaldehyde microspheres were studied. The samples were obtained by mixing an epoxy resin, cured with polyethylene polyamine, with hollow phenol-formaldehyde microspheres, poured into a mold and then cured at room temperature. The influence of the filler on the kinetics of the interaction of epoxy oligomer and aliphatic polyamine was studied. The effect of reducing the time of gel formation may occur due to the possible presence of reactive groups on the surface of microspheres. The experiments showed that the introduction of hollow phenol-formaldehyde microspheres in General leads to a slight decrease in the gel formation time. It is established that the introduction of hollow microspheres into the composition leads to a decrease in the density of the finished composition. The impact strength of spheroplastic was determined in accordance with GOST 4647-2015 "Method of Charpy impact strength determination" (ISO 179-1: 2010, NEQ). The introduction of hollow microspheres into the composition leads to a change in the impact strength of the composition in the direction of its decrease. A similar trend is observed in the study of the strength in the separation from the substrate of different materials. The coefficient of thermal conductivity was determined in a stationary mode on the device ITP-MG4"100" GOST 7076-99 "Method for determining the thermal conductivity and thermal resistance in a stationary thermal regime." Studies have shown that an increase in the content of hollow microspheres in the composition to 15% leads to a gradual decrease in the thermal conductivity coefficient to 0.74 W/m∙K. The studied materials can be used as thermal insulation materials and for the manufacture of products used in various fields of science and technology.


Author(s):  
Aseel Kais Rasheed ◽  
Noor Kais Rasheed ◽  
Ismail Ibrahim Marhoon

In this study, natural particles were added to blend polymer resin. Composite material prepared from pistachio shells was added to epoxy–polyurethane blend polymer. The weight ratio of additive for liquid polyurethane to epoxy was 12 wt.%. In addition, their mechanical and physical properties were studied depending on a range of variables, such as temperature (25 °C, 35 °C, 45 °C and 55 °C) and volume fraction (3%, 6%, 9% and 12%). Hardness, impact strength and thermal conductivity were studied. Results showed that the impact strength was increased and that the hardness and thermal conductivity values were reduced at high temperatures. Meanwhile, the impact strength and hardness increased and the thermal conductivity values decreased with increased volume fracture of pistachio shells particles.


2013 ◽  
Vol 750-752 ◽  
pp. 132-135 ◽  
Author(s):  
Zhang Yue ◽  
Mei Yan Yu ◽  
Xi Lan

Carbon nanotubes (CNTs) treated with an alkali solution were used to toughen epoxy resin (EP) by in-situ polymerization.The effects of different CNTs contents on the impact strength of EP were discussed. The morphology of impact section was investigated too.The results indicated that a certain amount of hydroxy groups were introduced on the surface of CNTs.The impact strength of EP is greatly enhanced with the increase of CNTs/EP weight ratio, and exhibited a maximum when ratio was 0.5.The toughness of CNTs/EP composites was remarkably improved.SEM showed that the fracture pattern of CNTs/EP composites was changed from brittle fracture to ductile fracture.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1264 ◽  
Author(s):  
Li Zhang ◽  
Wenfeng Zhu ◽  
Ying Huang ◽  
Shuhua Qi

One-dimensional silver nanowires (AgNWs) and two-dimensional graphene oxide (GO) were combined to construct a three-dimensional network structure. The AgNWs can effectively inhibit stacking of adjacent GO sheets by occupying regions between layers of GO. Moreover, the GO sheets embedded in the gaps of the AgNWs network increase the interfacial contact area between the AgNWs and the epoxy matrix, resulting in the formation of more efficient phonon transport channels. To prepare an epoxy-based thermal conductive composite, hybrid networks were fabricated and added to epoxy resin using a solution mixing method. Significant synergistic effects were observed between the AgNWs and GO sheets. The thermal conductivity of epoxy composites filled with 10 wt.% AgNW/GO hybrids was found to be 1.2 W/mK and the impact strength was 28.85 KJ/m2, which are higher than the corresponding values of composites containing AgNWs or GO sheets alone. Thus, the thermal conductivity and impact strength of the epoxy composites were improved. The additive effects are mainly owing to the improved interfacial contact between the hybrid fillers and the epoxy resin, resulting in a more efficient phonon transport network. The use of hybrid fillers with different structures is a simple and scalable strategy for manufacturing high-performance thermally conductive materials for electronic packaging.


2016 ◽  
Vol 51 (9) ◽  
pp. 1197-1208 ◽  
Author(s):  
Wei Li ◽  
Hongyu Li ◽  
Xinguo Yang ◽  
Wei Feng ◽  
Hongyun Huang

This paper reported a facile one-pot strategy for fabrication of sulfonic graphene oxide–epoxy resin nanocomposites. The rheological and thermal properties were employed to characterize the viscosity and the curing temperature of epoxy resin. Fourier transform infrared spectra for sulfonic graphene oxide and nanocomposites indicated that the sulfonic graphene oxide contains chemical cross-linking responsible for better interactions with the epoxy resin. The state of dispersion was evaluated at different scales by still picture camera and scanning electron microscopy (SEM). Tensile property tests indicated that the tensile strength and elasticity modulus of sulfonic graphene oxide–epoxy resin nanocomposites decreased slowly with increasing of sulfonic graphene oxide content. The critical flexural property and impact strength of epoxy resin filled with sulfonic graphene oxide nanocomposites were measured. The content, size, and dispersion state of sulfonic graphene oxide were examined. It was found that the content of sulfonic graphene oxide has greater impact on both flexural property and impact strength of nanocomposites compared with other conditions. For instance, the impact strength increased by 113.0% and the flexural strength and modulus increased by 39.3% and 55.7% using 1 wt.% sulfonic graphene oxide as compared to neat epoxy resin.


2020 ◽  
Vol 15 ◽  
pp. 155892502090132
Author(s):  
Sang-Hoon Lee ◽  
Seung-Won Oh ◽  
Young-Hee Lee ◽  
Il-Jin Kim ◽  
Dong-Jin Lee ◽  
...  

To prepare flame-retardant epoxy resin, phosphorus compound containing di-hydroxyl group (10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phospha phenanthrene-10-oxide, DOPO-HQ) was reacted with uncured epoxy resin (diglycidyl ether of bisphenol A, YD-128) and then cured using a curing agent (dicyandiamide, DICY). This study focused on the effect of phosphorus compound/phosphorus content on physical properties and flame retardancy of cured epoxy resin. The thermal decomposition temperature of the cured epoxy resins (samples: P0, P1.5, P2.0, and P2.5, the number represents the wt% of phosphorus) increased with increasing the content of phosphorus compound/phosphorus (0/0, 19.8/1.5, 27.8/2.0, and 36.8/2.5 wt%) based on epoxy resin. The impact strength of the cured epoxy resin increased significantly with increasing phosphorus compound content. As the phosphorus compound/phosphorus content increased from 0/0 to 36.8/2.5 wt%, the glass transition temperature (the peak temperature of loss modulus curve) increased from 135.2°C to 142.0°C. In addition, as the content of phosphorous compound increased, the storage modulus remained almost constant up to higher temperature. The limiting oxygen index value of cured epoxy resin increased from 21.1% to 30.0% with increasing phosphorus compound/phosphorus content from 0/0 to 36.8/2.5 wt%. The UL 94 V test result showed that no rating for phosphorus compounds less than 19.8 wt% and V-1 for 27.8 wt%. However, when the phosphorus compound was 36.8 wt%, the V-0 level indicating complete flame retardancy was obtained. In conclusion, the incorporation of phosphorus compounds into the epoxy chain resulted in improved properties such as impact strength and heat resistance, as well as a significant increase in flame retardancy.


RSC Advances ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 5722-5730 ◽  
Author(s):  
Le Zhai ◽  
Zhenxin Liu ◽  
Chen Li ◽  
Xiongwei Qu ◽  
Qingxin Zhang ◽  
...  

h-BN particles were used to fabricate cyanate ester/core–shell structured polyacrylic/BN composites. The impact strength and the thermal conductivity of the composites were simultaneously increased, which may be used in microelectronic packaging.


2014 ◽  
Vol 926-930 ◽  
pp. 198-201
Author(s):  
Li Ying Guo ◽  
Jin Lin Liu ◽  
Peng Cheng Huang ◽  
Jun Hai He ◽  
Shi Yang Bai ◽  
...  

Polyether imidazole ionic liquid (PIIL) was blended with general-purpose epoxy resin (EP). PIIL/EP was cured by ethylenediamine curing agent. The structure of PIIL/EP was determined by FTIR. The effect of the content of PIIL on the impact strength of EP was studied. The toughness of epoxy resin could be significantly improved by PIIL. The impact strength of the modified EP was improved with the increase of PIIL and leveled off when the content of PIIL was more than 45%, and the modified EP showed rubber elasticity obviously.


2010 ◽  
Vol 150-151 ◽  
pp. 698-702
Author(s):  
Zhi You Yang ◽  
Shao Rong Lu ◽  
Zhi Yi Huang ◽  
Chun He Yu ◽  
Kuo Liu

A new kind of lower-branched liquid crystalline polyester (LLCP) containing polyester mesogenic units was synthesized by p-hydroxybenzoic acid, terephthalyl chloride and trimellitic anhydride (TMA), then was used as collaborative modifier for the epoxy resin (E-51) with γ-azyl polyhedral oligomeric silsesquioxane (POSS). The experimental results showed that the LLCP / POSS could act as an effective toughening modifier for the epoxy resin. The impact strength of the composites modified with LLCP and POSS was 1.1 times higher than that of the unmodified system. The temperature of starting decomposition and maximum decomposition rate improved about 20 oC and 13 oC , respectively.


Sign in / Sign up

Export Citation Format

Share Document