Research of Epoxy Resin Modified by Polyether Imidazole Ionic Liquid

2014 ◽  
Vol 926-930 ◽  
pp. 198-201
Author(s):  
Li Ying Guo ◽  
Jin Lin Liu ◽  
Peng Cheng Huang ◽  
Jun Hai He ◽  
Shi Yang Bai ◽  
...  

Polyether imidazole ionic liquid (PIIL) was blended with general-purpose epoxy resin (EP). PIIL/EP was cured by ethylenediamine curing agent. The structure of PIIL/EP was determined by FTIR. The effect of the content of PIIL on the impact strength of EP was studied. The toughness of epoxy resin could be significantly improved by PIIL. The impact strength of the modified EP was improved with the increase of PIIL and leveled off when the content of PIIL was more than 45%, and the modified EP showed rubber elasticity obviously.

2021 ◽  
Author(s):  
Yonggang Du ◽  
Gonghui Shi ◽  
Hui Wang ◽  
Ge Zhao ◽  
Wei Li ◽  
...  

Abstract The novel bio-based epoxy resin based on naringenin was synthesized. The naringenin epoxy/UiO-66 composites were prepared by casting process with UiO-66 as modifier and maleic anhydride as curing agent. The influences of UiO-66 content on mechanical properties, thermal stability and flame retardancy of naringenin epoxy/UiO-66 composites were investigated. The results showed that the impact strength, glass transition temperature and limiting oxygen index of pure naringenin epoxy resin were 2.0 kJ/m2, 96 ℃ and 1.2% higher than that of di-glycidyl ether of bisphenol A (DGEBA), respectively. UiO-66 can significantly improve the impact strength of naringenin epoxy resin while assisting improve its flame retardancy. When UiO-66 content was 4 wt%, the impact strength and limiting oxygen index of the naringenin epoxy/UiO-66 composite were 7.6 kJ/m2 and 24.5%, which were 85.4% and 3.5% higher than that of pure naringin epoxy resin, respectively.


2016 ◽  
Vol 51 (9) ◽  
pp. 1197-1208 ◽  
Author(s):  
Wei Li ◽  
Hongyu Li ◽  
Xinguo Yang ◽  
Wei Feng ◽  
Hongyun Huang

This paper reported a facile one-pot strategy for fabrication of sulfonic graphene oxide–epoxy resin nanocomposites. The rheological and thermal properties were employed to characterize the viscosity and the curing temperature of epoxy resin. Fourier transform infrared spectra for sulfonic graphene oxide and nanocomposites indicated that the sulfonic graphene oxide contains chemical cross-linking responsible for better interactions with the epoxy resin. The state of dispersion was evaluated at different scales by still picture camera and scanning electron microscopy (SEM). Tensile property tests indicated that the tensile strength and elasticity modulus of sulfonic graphene oxide–epoxy resin nanocomposites decreased slowly with increasing of sulfonic graphene oxide content. The critical flexural property and impact strength of epoxy resin filled with sulfonic graphene oxide nanocomposites were measured. The content, size, and dispersion state of sulfonic graphene oxide were examined. It was found that the content of sulfonic graphene oxide has greater impact on both flexural property and impact strength of nanocomposites compared with other conditions. For instance, the impact strength increased by 113.0% and the flexural strength and modulus increased by 39.3% and 55.7% using 1 wt.% sulfonic graphene oxide as compared to neat epoxy resin.


e-Polymers ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 545-554 ◽  
Author(s):  
Anxin Li ◽  
Pingli Mao ◽  
Bing Liang

AbstractIn order to improve the compatibility of flame retardant and epoxy resin, a phosphorus nitrogen flame retardant curing agent poly(p-xylylenediamine spirocyclic pentaerythritol bisphosphonate) (PPXSPB) was synthesized. FTIR, 1HNMR, and mass spectroscopy were used to identify the chemical structure of PPXSPB. Epoxy resin (E-44) and PPXSPB as the raw material, a series of thermosetting systems were prepared. The effects of PPXSPB on flame retardancy, water resistance, thermal degradation behavior, mechanical properties and the adhesive strength of EP/PPXSPB thermosets were investigated. The results show that with the increase of phosphorus content, the oxygen index and carbon residue of the system both increased significantly, and the heat release rate gradually decreased, which is of great significance in delaying the occurrence of fire. When the phosphorus content is 3.24% in EP/PPXSPB thermosets, EP-2 can successfully pass the UL94 V-0 flammability rating, the LOI value of EP-2 can reach 31.4%, the impact strength and tensile strength was 6.58 kJ/m2 and 47.10 MPa respectively, and the adhesive strength was 13.79 MPa, the system presents a good overall performance.


2013 ◽  
Vol 401-403 ◽  
pp. 713-716
Author(s):  
Cheng Fang ◽  
Dong Bo Guan ◽  
Wei Guo Yao ◽  
Shou Jun Wang ◽  
Hui An

The epoxy resin was modified with the mixture of α,ω-dihydroxy poly-(3,3,3-trifluoropropyl) siloxane (PTFPMS), KH560 and stannous octoate. KH560 can react with PTFPMS and also epoxy resin curing agent. The two reactions were characterized by FI-IR. The modified epoxy resin was characterized by FI-IR. The result showed that fluorine-containing silicone had been successfully introduced into the epoxy system. The mechanical and thermal properties of the modified epoxy resin were analyzed. The results showed that with the increase of PTFPMS the impact strength of epoxy resin increased, hardness and bending strength correspondingly reduced, slight decrease in the glass transition temperature.


2020 ◽  
Vol 15 ◽  
pp. 155892502090132
Author(s):  
Sang-Hoon Lee ◽  
Seung-Won Oh ◽  
Young-Hee Lee ◽  
Il-Jin Kim ◽  
Dong-Jin Lee ◽  
...  

To prepare flame-retardant epoxy resin, phosphorus compound containing di-hydroxyl group (10-(2,5-dihydroxyphenyl)-9,10-dihydro-9-oxa-10-phospha phenanthrene-10-oxide, DOPO-HQ) was reacted with uncured epoxy resin (diglycidyl ether of bisphenol A, YD-128) and then cured using a curing agent (dicyandiamide, DICY). This study focused on the effect of phosphorus compound/phosphorus content on physical properties and flame retardancy of cured epoxy resin. The thermal decomposition temperature of the cured epoxy resins (samples: P0, P1.5, P2.0, and P2.5, the number represents the wt% of phosphorus) increased with increasing the content of phosphorus compound/phosphorus (0/0, 19.8/1.5, 27.8/2.0, and 36.8/2.5 wt%) based on epoxy resin. The impact strength of the cured epoxy resin increased significantly with increasing phosphorus compound content. As the phosphorus compound/phosphorus content increased from 0/0 to 36.8/2.5 wt%, the glass transition temperature (the peak temperature of loss modulus curve) increased from 135.2°C to 142.0°C. In addition, as the content of phosphorous compound increased, the storage modulus remained almost constant up to higher temperature. The limiting oxygen index value of cured epoxy resin increased from 21.1% to 30.0% with increasing phosphorus compound/phosphorus content from 0/0 to 36.8/2.5 wt%. The UL 94 V test result showed that no rating for phosphorus compounds less than 19.8 wt% and V-1 for 27.8 wt%. However, when the phosphorus compound was 36.8 wt%, the V-0 level indicating complete flame retardancy was obtained. In conclusion, the incorporation of phosphorus compounds into the epoxy chain resulted in improved properties such as impact strength and heat resistance, as well as a significant increase in flame retardancy.


2015 ◽  
Vol 744-746 ◽  
pp. 1463-1466
Author(s):  
Xi Wang

This paper presents the synthesis of a new type of flexible epoxy curing agent and an approach to improve the toughness of epoxy resin by curing without reducing the strength and modulus of the resin-cured material. The results show that the degree of toughness reaches maximum values when the flexible curing agent is applied at weight percentages (wt.%) between 10% and 15%. When the amount of flexible curing agent added to epoxy resin weight is 10wt.%, the impact toughness and fracture toughness increases by 33.3% and 96.3%, respectively, compared with the pure epoxy resin. When the amount of flexible curing agent added to epoxy is 10wt.%, the resulting impact thoughness of the material is 19.5 kJ•m-2 at-50°C, the impact toughness of pure epoxy resin is only 7.96 kJ•m-2.


2010 ◽  
Vol 150-151 ◽  
pp. 698-702
Author(s):  
Zhi You Yang ◽  
Shao Rong Lu ◽  
Zhi Yi Huang ◽  
Chun He Yu ◽  
Kuo Liu

A new kind of lower-branched liquid crystalline polyester (LLCP) containing polyester mesogenic units was synthesized by p-hydroxybenzoic acid, terephthalyl chloride and trimellitic anhydride (TMA), then was used as collaborative modifier for the epoxy resin (E-51) with γ-azyl polyhedral oligomeric silsesquioxane (POSS). The experimental results showed that the LLCP / POSS could act as an effective toughening modifier for the epoxy resin. The impact strength of the composites modified with LLCP and POSS was 1.1 times higher than that of the unmodified system. The temperature of starting decomposition and maximum decomposition rate improved about 20 oC and 13 oC , respectively.


2014 ◽  
Vol 636 ◽  
pp. 73-77 ◽  
Author(s):  
Xin Hua Yuan ◽  
Qiu Su ◽  
Li Yin Han ◽  
Qian Zhang ◽  
Yan Qiu Chen ◽  
...  

Microencapsulated E-51 epoxy resin healing agent and phthalic anhydride latent curing agent were incorporated into E-44 epoxy matrix to prepare self-healing epoxy composites. When cracks were initiated or propagated in the composites, the microcapsules would be damaged and the healing agent released. As a result, the crack plane was healed through curing reaction of the released epoxy latent curing agent. In the paper, PUF/E-51 microcapsules were prepared by in-situ polymerization. The mechanical properties of the epoxy composites filled with the self-healing system were evaluated. The impact strength and self-healing efficiency of the composites are measured using a Charpy Impact Tester. Both the virgin and healed impact strength depends strongly on the concentration of microcapsules added into the epoxy matrix. Fracture of the neat epoxy is brittle, exhibiting a mirror fracture surface. Addition of PUF/E-51 microcapsules decreases the impact strength and induces a change in the fracture plane morphology to hackle markings. In the case of 8.0 wt% microcapsules and 3.0 wt% latent hardener, the self-healing epoxy exhibited 81.5% recovery of its original fracture toughness.


2021 ◽  
Author(s):  
Chenglin Zhang ◽  
Guohua Gu ◽  
Shuhua Dong ◽  
Zhitao Lin ◽  
Chuncheng Wei ◽  
...  

Abstract In this study, the nonisothermal differential scanning calorimetry (DSC) was carried out to evaluate the curing reaction of fiber/epoxy laminates. The optimal curing process of the prepreg was obtained by T-β extrapolation method and nth-order reaction curing kinetic equation. The bending strength, impact strength and thermodynamic properties of the composite laminates with different ply orientations were investigated, respectively. The results show that the apparent activation energy and the reaction order of the prepregs are 82.89 kJ/mol and 0.92, respectively. The curing process of carbon fiber/epoxy resin prepreg is 130 ℃ /60min + 160 ℃/30 min. The bending strength of [0]10 laminate is 1948.3 MPa, which is 11.8 times higher than that of [+ 45/-45]5s laminate, and 96.4% higher than that of [0/90]5s laminate. The impact strength of [0]10 laminate is higher than that of [+ 45/-45]5s and [0/90]5s laminates. The glass transition temperature (Tg) of the laminates is 142 ~ 146 ℃, and the loss factor of [0]10 laminate is significantly higher than that of [+ 45/-45]5s and [0/90]5s laminates. This research provides a theoretical basis for the further application of prepregs to fiber composite materials.


2020 ◽  
Vol 992 ◽  
pp. 285-289
Author(s):  
S.V. Vasiliev ◽  
Y.Y. Fedorov ◽  
A.V. Savvina

This article discusses effect of filler concentration on impact strength of an epoxy resin composite. The optimal ratio of resin and hardener is defined. Research of the effect of the concentration of the filler - carbon black P505 on the impact strength of a composite material based on epoxy resin ED-20 is made. According to the results of the study, it is shown that with an increase of concentration of the filler from P505 carbon black, the toughness decreases. Fractographic studies of the fracture surfaces of composites were also carried out, which indicate that the introduction of a filler leads to a decrease in the surface energy of destruction. Thus, studies of epoxy composite modified with technical carbon grade P505 showed a decrease in impact strength up to 4 times, depending on the increase in the mass fraction of the filler.


Sign in / Sign up

Export Citation Format

Share Document