scholarly journals Optical, Structural, Morphological Properties of Chromium (III) Oxide Nanostructure Synthesized Using Spray Pyrolysis Technique

2021 ◽  
Vol 19 (51) ◽  
pp. 79-86
Author(s):  
Fatin Hameed Mohammed ◽  
Haitham M. Mikhlif

Nanostructure of chromium oxide (Cr2O3-NPs) with rhombohedral structure were successfully prepared by spray pyrolysis technique using Aqueous solution of Chromium (III) chloride CrCl3 as solution. The films were deposited on glass substrates heated to 450°C using X-ray diffraction (XRD) shows the nature of polycrystalline samples. The calculated lattice constant value for the grown Cr2O3 nanostructures is a = b = 4.959 Å & c = 13.594 Å and the average crystallize size (46.3-55.6) nm calculated from diffraction peaks, Spectral analysis revealed FTIR peak characteristic vibrations of Cr-O Extended and Two sharp peaks present at 630 and 578 cm-1 attributed to Cr-O “stretching modes”, are clear evidence of the presence of crystalline Cr2O3. The energy band gap (3.4 eV) for the chromium oxide nanostructures was measured using the UV-VIS-NIR Optical Spectrophotometer. It was found that by scanning electron microscopy (SEM) and image results, there is a large amount of nanostructure with an average crystal size of 46.3-55.6 nm, which indicates that our synthesis process is a successful method for preparing Cr2O3 nanoparticles.

2019 ◽  
Vol 26 (01) ◽  
pp. 1850126 ◽  
Author(s):  
N. BOUGUILA ◽  
M. KRAINI ◽  
J. KOAIB ◽  
I. HALIDOU ◽  
C. VÁZQUEZ-VÁZQUEZ ◽  
...  

Tin-doped indium sulfide films were grown on glass substrates by spray pyrolysis technique at low different Sn:In atomic ratio in the starting solution and optimum experiment conditions ([Formula: see text]C, S:[Formula: see text]). The tin to indium molar ratio Sn:In was varied from 0 to [Formula: see text] in the solution. The obtained films with 2[Formula: see text][Formula: see text]m of thickness, are perfectly adhered, homogenous and uniform on the substrates. X-ray diffraction study reveals that all the films are formed in [Formula: see text] phase grown preferentially along (400). These films lose the orientation with increasing tin doping level. The crystallite size of undoped film was 48.8[Formula: see text]nm, which increases to 59.2[Formula: see text]nm corresponding to the film grown with Sn:[Formula: see text]. Raman analysis shows different peaks related to In2S3 phase. Optical analysis shows that these films are transparent in the visible and near IR with a transmittance higher than 85%. The optical gap energy is found to be direct and varies from 2.61[Formula: see text]eV to 2.76[Formula: see text]eV with the increase of Sn:In ratio from 0 to [Formula: see text]. The films are [Formula: see text] type and Sn doping improves considerably their conductivity. The photoluminescence behavior of In2S3:Sn films was also studied.


2010 ◽  
Vol 644 ◽  
pp. 105-108 ◽  
Author(s):  
M.A. García-Lobato ◽  
A. Hernández-V ◽  
H.M. Hdz-García ◽  
Arturo I. Martinez ◽  
M.I. Pech-Canul

Fe2O3 thin films were obtained on glass substrates by the ultrasonic spray pyrolysis technique; additionally, a thermodynamic analysis on the Fe2O3 formation from different precursor salts was performed. In this work, the influence of the deposition temperature is related with the structural, optical, and morphological properties of the iron oxide films. The present results reveal that amorphous thin films are obtained at temperatures lower than 350° C, while polycrystalline films with the maghemite structure are formed at higher temperatures.


2012 ◽  
Vol 620 ◽  
pp. 340-344
Author(s):  
Y. Raviprakash ◽  
Kasturi V. Bangera ◽  
G.K. Shivakumar

Thin films of CdxZn(1-x)S (0 x 1) were deposited on glass substrates by the chemical spray pyrolysis technique using a less used combination of chemicals. The variation of structural properties of these films in relation with composition was studied in detail. The entire study was made for a wide range of compositions of CdxZn(1-x)S thin films (x=0 to 1 in steps of 0.1). XRD studies reveal that all the films are polycrystalline with hexagonal (wurtzite) structure of which reflection peaks associated with (100), (002) and (110) planes were clearly identified for all the films and inclusion of cadmium into the structure of ZnS improved the crystallinity of the films. The value of lattice constants a and c was found to vary with composition from 0.382 to 0.415 nm and 0.625 to 0.675 nm respectively.


2012 ◽  
Vol 727-728 ◽  
pp. 691-696 ◽  
Author(s):  
Tiago Falcade ◽  
Giselle Barbosa de Oliveira ◽  
Diego Pereira Tarragó ◽  
Vânia Caldas de Sousa ◽  
Célia de Fraga Malfatti

Many studies have been reported in the literature related to YSZ films deposited on dense substrate or applied directly on the SOFC anode. However, there are not a lot of studies about the YSZ deposition on the cathode. The present work aims to obtain yttria-stabilized zirconia (YSZ), using the spray pyrolysis technique, for their application as electrolyte in solid oxide fuel cells (SOFC). The films were obtained from a precursor solution containing zirconium and yttrium salts, dissolved in ethanol and propylene glycol (1:1), this solution was sprayed onto a heated LSM porous substrate. The substrate temperature was varied in order to obtain dense and homogeneous films. After deposition, the films were heat treated, aiming to crystallize and stabilize the zirconia cubic phase. The films were characterized by Scanning Electron Microscopy (SEM), thermal analysis, X-ray diffraction and Fourier transform Infrared Spectroscopy (FT-IR).


2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
K. R. Nemade ◽  
S. A. Waghuley

Solvent mixed spray pyrolysis technique has attracted a global interest in the synthesis of nanomaterials since reactions can be run in liquid state without further heating. Magnesium oxide (MgO) is a category of the practical semiconductor metal oxides, which is extensively used as catalyst and optical material. In the present study, MgO nanoparticles were successfully synthesized using a solvent mixed spray pyrolysis. The X-ray diffraction pattern confirmed the formation of MgO phase with an excellent crystalline structure. Debye-Scherrer equation is used for the determination of particle size, which was found to be 9.2 nm. Tunneling electron microscope analysis indicated that the as-synthesized particles are nanoparticles with an average particle size of 9 nm. Meanwhile, the ultraviolet-visible spectroscopy of the resulting product was evaluated to study its optical property via measurement of the band gap energy value.


Author(s):  
Sofea Nabila Hazmin ◽  
F. S. S. Zahid ◽  
N. S. M. Sauki ◽  
M. H. Mamat ◽  
M. N. Amalina

<span>This paper presents the physical and optical properties of AZO thin films on Teflon substrate at low deposition temperature by spray pyrolysis. In this study, the effect of different process parameters such as spray time and substrate to nozzle distance on the physical and optical characteristic of aluminium doped zinc oxide (AZO) deposited on Teflon substrates was investigated. The AZO thin films were successfully deposited onto Teflon substrate by spray pyrolysis technique at low deposition temperature. The physical analysis by X-ray diffraction (XRD) shows that the deposited Teflon substrate films have a preferred orientation along the direction (100) and (101). Optical measurements were conducted using Jasco/V-670 Ex Uv-Vis-NIR Spectrophotometer model to confirms that in visible ray it is possible to get good reflectance of AZO films with a reflection of 80%. The values of band gaps Eg were calculated from the spectra of UV-Visible reflectance that were vary between 3.06 and 3.14 eV. </span>


2010 ◽  
Vol 7 (1) ◽  
pp. 69-75
Author(s):  
Baghdad Science Journal

Undoped and Co-doped zinc oxide (CZO) thin films have been prepared by spray pyrolysis technique using solution of zinc acetate and cobalt chloride. The effect of Co dopants on structural and optical properties has been investigated. The films were found to exhibit maximum transmittance (~90%) and low absorbance. The structural properties of the deposited films were examined by x-ray diffraction (XRD). These films, deposited on glass substrates at (400? C), have a polycrystalline texture with a wurtzite hexagonal structure, and the grain size was decreased with increasing Co concentration, and no change was observed in lattice constants while the optical band gap decreased from (3.18-3.02) eV for direct allowed transition. Other parameters such as Texture Coefficient (Tc), dislocation density (?) and number of crystals (M) were also calculated .


1990 ◽  
Vol 202 ◽  
Author(s):  
L. H. Chou ◽  
M. C. Kuo

ABSTRACTThin Sb films have been prepared on glass substrates by rapid thermal evaporation. Films with thicknesses varied from 260 Å to 1300Å were used for the study. X-ray diffraction data showed that for films deposited at room substrate temperature, an almost random grain orientation was observed for films of 1300 Å thick and a tendency for preferred grain orientation was observed as films got thinner. For films of 260 Å thick, only two x-ray diffraction peaks--(003) and (006) were observed. After thermal annealing, secondary grains grew to show preferred orientation in all the films. This phenomenon was explained by surface-energy-driven secondary grain growth. This paper reports the effects of annealing time and film thickness on the secondary grain growth and the evolution of thin Sb film microstmctures. Transmission electron microscopy (TEM) and x-ray diffraction were used to characterize the films.


2021 ◽  
Vol 317 ◽  
pp. 53-59
Author(s):  
Muhammad Safwan Sazali ◽  
Muhamad Kamil Yaakob ◽  
Mohamad Hafiz Mamat ◽  
Oskar Hasdinor Hassan ◽  
Muhd Zu Azhan Yahya

In this work, single phase Bismuth Ferrite, BiFeO3 was successfully synthesized by using hydrothermal method assisted with different weight (0.24 g, 0.36 g and 0.48 g) of Chitosan. Potassium hydroxide (KOH) were used as a mineralizer during the synthesis process for the precipitation. The samples were characterized for different properties such as structural and optical properties, and were then compared with previous works. The X-ray diffraction data for all the samples showed that the samples had a single phase belonging to R3c space group with perovskite rhombohedral structure at diffraction angle 32.0° to 32.5° even though the slight presence of secondary phase at diffraction angle 28° was detected. Scanning electron microscope revealed a decrement in particle size as the weight of Chitosan increased indicating effective used of Chitosan in controlling the agglomeration of the particles. All samples BiFeO3 assisted with and without Chitosan showed significant enhancement in energy gap where the obtained results showed a small energy gap values ranging from ~1.22 eV to ~1.88 eV determined from UV-vis absorbance characterization. Therefore, by the addition of Chitosan, the properties of BiFeO3 such as structural and optical have changed as well as preventing from the particle to agglomerate.


Author(s):  
W. Liu ◽  
P. Feng ◽  
X. Ren ◽  
L. Zhu

Abstract A new method was developed for quickly preparing a highemissivity silicon boride compound of SiBx (x = 3, 4, 5, 6) by highly exothermic Ti-TiO2-Si-Al chemical oven preheating. The SiBx combustion synthesis process and adiabatic combustion temperature were investigated. A large exothermic reaction occurred at the combustion temperature of 1 700 K. X-ray diffraction results indicate that an SiBx phase and a substantial amount of unreacted Si were identified in the products. By increasing the boron content until the Si-B ratio reached to 1 : 6, the diffraction peaks primarily indicated SiB6, SiB4, and Si11B33 in the final product. According to the spectra and quantitative results, the atomic chemical composition ratio of Si and B was close to the nominal composition. Thus, this method offers an efficient way to produce Si-B compounds with less time and energy consumption than current methods.


Sign in / Sign up

Export Citation Format

Share Document