scholarly journals RADIATION SYNTHESIS OF SILVER NANOPARTICLES/CHITOSAN AGAINST Corynespora cassiicola CAUSING LEAF FALL DISEASE ON RUBBER TREES

2018 ◽  
Vol 55 (1A) ◽  
pp. 45
Author(s):  
Le Thi An Nhien

In this study, silver nanoparticles (AgNPs) were prepared by gamma rays irradiation of 1.0, 2.5, 5.0 and 10 mM silver nitrate solution using chitosan as a stabilizer. UV spectra, morphology and size of AgNPs irradiated at different doses were characterized by using UV-vis spectrophotometer and TEM images. The obtained results indicated that the average size of AgNPs increased by the increase of silver concentration in irradiated solution or the degree of acetylation of chitosan, while the increase of chitosan concentration was found to be a functional key for reducing the average size of particles in AgNPs product. In vitro test, AgNPs inhibited the growth of Corynespora cassiicola. In particularly, the inhibitory efficiency of AgNPs on the growth of C. cassiicola on rubber leaf extract media increased from 52.1 to 100 % when the average particle size of particles in AgNPs product decreased from 15 to 5 nm at the concentration of 50 ppm. In addition, the increase of AgNPs concentration from 10 to 90 ppm also enhanced the antifungal activity to be from 6.3 to 100 %, respectively. It suggests that the silver nanoparticles/chitosan (AgNPs/chitosan) synthesized by γ-rays irradiation method is a very promising fungicidal product applying for treating C. cassiicola, a serious pathogen fungus on rubber trees.

Author(s):  
Liem Le ◽  
The Nguyen ◽  
Dieu Nguyen

In this work, silver nanoparticles (AgNPs) were synthesized rapidly and eco-friendlily using the extract of Mulberry leaves and aqueous solution of silver nitrate without any toxic chemical [1,2]. The Mulberry leaves extract acts as both reducing agent and stabilizing agent. The UV-Vis spectrum shows peak at 430 nm. The TEM image of synthesized AgNPs sample shows spherical shaped particles whose size range from 15 to 20 nm. TEM image of nano silver solution sample synthesized by microwave assisted method shows nearly spherical particles with an average particle size of 10 nm. The absorption UV-vis spectrum of silver nanoparticles synthesized by microwave assisted method (AgNPsmw) shows a sharp absorption band around 415 nm. After two month storage of AgNPsmw, the absorption spectrum of AgNPsmw was taken again. The UV-Vis spectrum shows negligible peak changes of silver nanoparticles have occurred after two months of storage. The synthesized AgNPs material could be used as an antimicrobial, used in the field of textile and in wastewater treatment.


2019 ◽  
Vol 4 (2) ◽  
pp. 86
Author(s):  
Astuti Amin ◽  
Nur Khairi ◽  
Eko Allo

The research of manufacturing chitosan from shrimp shell waste , and their use as a stabilizer in the manufacture of silver nanoparticles has been done. The aim of the research was to synthesize silver nanoparticles using chitosan as a stabilizer by chemical reduction method and determine the effect of chitosan concentration on the stability of Ag nanoparticles. In this study, the raw material used is shrimp shell powder and then processed in several stages, eliminating proteins, demineralization, and deacetylation. Chitosan obtained is 16.4 % of shrimp shell powder, with a degree of deacetylation of 85 %. Chitosan is used to synthesize silver nanoparticles as a reducing agent of silver ions in silver nitrate solution and is expected to be stabilizer. Sample containing 45 mg of chitosan and 1000 ppm AgNO3 has 421,60 nm of maximum wavelength, and the average particle size is 154.07 nm.


2013 ◽  
Vol 1 (04) ◽  
pp. 16-24 ◽  
Author(s):  
Anu Kumar ◽  
Kuldeep Kaur ◽  
Sarika Sharma

The present study reports the synthesis of silver nanoparticle using Morus nigra leaf extract were used as reducing agent for reduction of silver nitrate solution. The synthesis of silver nanoparticles was analyzed by UV-Visible spectroscopy, Scanning Electron Microscopy. The SEM analysis has shown that size of silver nanoparticles synthesized from leaves extract of M.nigra was 200 nm and seems to be spherical in morphology. Morphology of chemically synthesized silver nanoparticles is nearly spherical and of size ranges from 300-500 nm. The average particle size analyzed from SEM analysis was observed to be 350 nm. This article has discussed the synthesis of silver nanoparticles generated from plant extract, characterization and antibacterial analysis. In this study the antibacterial activity was examined against six MTCC cultures collected from IMTECH Chandigarh, Including both gram positive and gram negative bacteria such as P.aeruginosa, S.aureus, B.subtilis, E.coli, P.flourescens and Streptococus mutans. Out of these strains the antimicrobial activity of the silver nanoparticles showed maximum zone of inbhition against P.flourescens (22 mm), P.aeruginosa (19 mm), S.aureus (18 mm) and least effective against E.coli (15mm). In contrast chemically synthesized silver nanoparticles were found most effective against S.aureus (13 mm) and B.subtilis (12mm) and almost ineffective against Streptococcus mutans (6 mm) and P.flourescens (4 mm). In the concluding remarks, the silver nanoparticles synthesized using M.nigra leaves extract would be a better antimicrobial effective against various bacterial species.


2013 ◽  
Vol 2013 (DPC) ◽  
pp. 000862-000889
Author(s):  
Hironori Uno ◽  
Masayuki Ishikawa ◽  
Akihiro Masuda ◽  
Hiroki Muraoka ◽  
Kanji Kuba

The work to be detailed in this paper is our development of 96.5mass%Sn-3.0mass%Ag-0.5mass%Cu fine solder particles with an average particle size of under 3um (D50), using a chemical reduction method. An evaluation was conducted on the properties of the particles. The average size of particles appeared to be under 3um with a higher yield compared to particles using the conventional gas atomization method. The melting temperature of fine solder particles using this method was its eutectic temperature, which is same as using the gas–atomized particles. 120um pitch solder bumps from the solder paste using the above mentioned fine solder particles were created on the substrate. As a result of property evaluation, it was turned out that the solder paste created a superior printing shape and coplanarity compared to the conventional paste with gas-atomized particles. In order to investigate the superior printing property generated by the paste with fine solder particles, the rheology of the paste was evaluated.It was verified that the anisotropic shape of particles has contributed to prevent the printed paste from slumping, which has resulted in the improvement of printed shape. It also shows that the filling characteristic of the paste was improved by the smaller particles and the better coplanarity was observed. The importance of finer solder particles for finer pitch assembly will be presented.


Author(s):  
SNEHA THAKUR ◽  
KRISHNA MOHAN G

Objective: The main objective of the research work is to evaluate the antityrosinase potential of onion DNA silver nanoparticles (AgNPs). Methods: The onions were procured from the local market and DNA was extracted from onions using detergent and methylated spirit. The isolated DNA was selected for synthesis of AgNPs which acts as capping and reducing agent. About 10 ml of the DNA extract was added to 90 ml of 0.1 N silver nitrate solution. After 24 h incubation, the solution turned dark brown, which indicates the formation of AgNPs. The synthesized DNA AgNPs were characterized by ultraviolet-visible, Fourier transform infrared (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS) studies. Results: The results revealed that the particles were uniform in shape with face-centered cubic structure. The particles are 153±20.4 nm in size and were no signs of agglomeration measured by DLS studies. The FTIR spectroscopy revealed B form of DNA along with strong N-H stretching, C=N stretching, and also asymmetric vibrations of phosphate groups characteristic for DNA molecule. The XRD studies revealed the face-centered cubic structure. SEM studies revealed the spherical structure with average particle size of 150±0.1 nm for single DNA nanoparticles. The onion DNA AgNPs were further investigated for its antityrosinase activity against the standard kojic acid and were to have anticancer potential nearer to the standard. Conclusion: From the results, it is evident that the synthesized onion DNA AgNPs have antityrosinase potential and can be further investigated for in vivo anticancer potential in future.


2020 ◽  
Vol 21 (4) ◽  
pp. 177
Author(s):  
Siti Suhartati ◽  
Iwan Syahjoko Saputra ◽  
Dwinna Rahmi ◽  
Yoki Yulizar ◽  
Sudirman Sudirman

BIOREDUCTION AND CHARACTERIZATION OF SILVER NANOPARTICLES FROM OIL PALM EMPTY FRUIT BUNCH (OPEFB). The synthesis of silver nanoparticles was successfully carried out by extracting oil palm empty fruit bunch. The precursor used was silver nitrate (AgNO3) with a concentration of 9x10-4 M and 5 wt% of the oil palm empty fruit bunch extract. OPEFB acted as a capping agent in the synthesis of silver nanoparticles. The bioreduction method Ag+ to Ag0 produced a silver nanoparticle colloid in brown color. The results of the UV-Vis spectrophotometer showed the silver nanoparticles colloids spectrum at a wavelength of 420 nm with an absorbance value of 0.5. FTIR shows the reduction and shift of absorption peak in the hydroxyl functional group (-OH) at wavenumbers of 3323 cm-1 and the presence of absorption peaks at 560 cm-1. While, XRD pattern showed the specific crystallinity peaks of silver nanoparticles at 2θ: 33.24°; 39.98°; 61.23°; dan 79.13° respectively with the face-centered cubic crystal structure (FCC) and crystallite size of 15 nm. PSA analysis showed two specific peaks with an average size distribution silver nanoparticles of 43.5 nm and a PDI value of 0.4. Analysis of TEM shows the average particle size of 20 nm with a spherical particle shape.


2021 ◽  
Vol 53 (03) ◽  
pp. 190-200
Author(s):  
Sarita Kumar ◽  

Introduction: Global rise in the Aedes-borne diseases and harmful effects of synthetic insecticides has diverted research to explore secondary metabolites in plants as mosquito control agent in the form of nanoparticles. Current study investigated Clitoria ternatea-mediated nanoparticles against Aedes aegypti. Methods: The aqueous and hexane leaf extracts of C. ternatea were assayed against Ae. aegypti early fourth instars. The extract-mediated silver nanocomposites (AgNCs) were synthesized after optimizing the volume and concentration of silver nitrate solution. The synthesis was tracked by the colour change of reaction mixture from pale yellow to dark brown followed by monitoring with UV-Visible spectroscopy and Dynamic Light Scattering. Results: The biosynthesis of 3 mM, 4 mM and 5 mM AgNCs was traced at 438, 401 and 407 nm, respectively. The average particle size distribution ranged from 34.62 to 60.64 nm and polydispersity index was 0.6-0.7. The 24 h larval exposure with aqueous and hexane leaf extracts demonstrated respective LC50 values of 53.057 and 42.179 mg/L, which decreased significantly on larvicidal assay with NCs. The 5mM AgNCs showed the maximum efficiency with LC50 of 10.317 mg/L after 24 h. Scanning and transmission electron microscopy images demonstrated a spherical, poly-dispersed structure with diameter in the 1-27 nm range. The assays against non-targets; Moina and Cyclops ascertained the eco-safety of NCs. Conclusion: The study demonstrated the C. ternatea leaf extract as possible effective mosquito nano-larvicide, alternate to traditional insecticides. Field studies, which could not be held due to the current pandemic, would further ascertain the possible use of these NCs against Aedes larvae.


Author(s):  
Kiranmai Mandava ◽  
Kruthika Lalit ◽  
Venu Madhav Katla

The objective of the study was to develop silver nanoparticles loaded with Ketoprofen (Ag-KP) for increasing the drug solubility and thereby its bioavailability. Ag-KP were prepared by the solvent evaporation method using β-Cyclodextrin as a biodegradable polymer. Different formulations of Ag-KP were characterized for the drug entrapment efficiency, Fourier Transform Infrared Spectroscopy (FTIR), particle size analysis, X-ray diffraction studies (XRD), scanning electron microscopy (SEM) and  in-vitro dissolution studies. The optimized formulation (F6) has shown an average particle size of 167.8 ± 3.46 nm,zeta potential of -23.7 ± 1.46 mV. FTIR revealed that the drug showed good excipient compatibility. XRD studies showed that the drug has changed from crystalline to amorphous state. In all formulations, F6 formulation (optimized) exhibited high drug entrapment efficiency (∼93%). SEM studies indicated the shape of Ag-KP was roughly spherical with smooth surface. In vitro dissolution studies showed that Ag-KP from F6 formulation was 94.3 ± 4.9% but for the marketed formulation, it is only 84.6 ± 3.7% in 12 hours and F6 was found to be found stable for three months at both refrigerated and room temperature (RT).


Author(s):  
RAGHAVENDRA SN ◽  
RAGHU HS ◽  
DIVYASHREE K ◽  
RAJESHWARA AN

Objectives: Anthracnose disease is caused by Colletotrichum gloeosporioides, affecting most of the fruit and vegetable plants. The present study is aimed to synthesize silver nanoparticles (AgNPs) using neem extract and conjugate then with fungicide to check the antifungal activity against anthracnose disease. Methods: In the current study, we have synthesized copper oxychloride-conjugated AgNPs (COC-AgNPs) by a biological method using neem extract and have tested their effectiveness against C. gloeosporioides. The COC-AgNPs were characterized by UV–visible spectroscopy, fourier-transform infrared, scanning electron microscopy, and X-ray diffraction analysis, and in vitro antifungal activity was investigated. Results: The shape of COC-AgNPs was found to be spherical with an average particle size of 21–25 nm. The fungicide-conjugated AgNPs exhibited highest growth inhibition of C. gloeosporioides (~187%) as compared to fungicide copper oxychloride. Conclusion: These results indicate that the COC-AgNPs could be effectively used to control anthracnose disease in mango and in other crops. These COC-AgNPs can drastically reduce the amount of fungicide currently used which will reduce the environmental pollution caused by the fungicide.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Mohamed M. El-Zahed ◽  
Zakaria A. Baka ◽  
Mohamed I. Abou-Dobara ◽  
Ahmed K. El-Sayed ◽  
Magy M. Aboser ◽  
...  

AbstractA novel biosynthesis of dual reduced graphene oxide/silver nanocomposites (rGO/AgNC) using the crude metabolite of Escherichia coli D8 (MF06257) strain and sunlight is introduced in this work. Physicochemical analysis of these rGO/AgNC revealed that they are sheet-like structures having spherically shaped silver nanoparticles (AgNPs) with an average particle size of 8 to 17 nm, and their absorption peak ranged from 350 to 450 nm. The biosynthesized rGO/AgNC were characterized by UV–vis and FT-IR spectra, X-ray diffraction, Zeta potential and transmission electron microscopy. After the injection of these nanocomposites to mice, their uptake by the kidney and liver has been proven by the ultrastructural observation and estimation of the hepatic and renal silver content. These nanocomposites caused a moderate toxicity for both organs. Changes in the liver and kidney functions and histopathological effects had been observed. The rGO/AgNC revealed a remarkable antitumor effect. They showed a dose-dependent cytotoxic effect on Ehrlich ascites carcinoma (EAC) cells in vitro. Treatment of mice bearing EAC tumors intraperitoneally with 10 mg/kg rGO/AgNC showed an antiproliferative effect on EAC cells, reduced ascites volume, and maintained mice survival. The results indicate that this green synergy of silver nanoparticles with reduced graphene oxide may have a promising potential in cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document