DIMERIZATION OF POLYAROMATIC HYDROCARBON MOLECULES WITH FORMATION OF E-BRIDGE BOND: A THEORETICAL STUDY

Author(s):  
A. S. Savchenkova ◽  
◽  
A. S. Semenikhin ◽  
I. V. Chechet ◽  
S. G. Matveev ◽  
...  

In combustion engines and other fuel-burning devices, during the combustion of hydrocarbon fuels at a temperature of 1000-1400 K, soot is actively formed, deposited on the cold surfaces of the devices, which reduces their service life. At present, much attention is paid to the problems of controlling the amount and size of soot particles formed during combustion. However, the mechanism of soot formation has not yet been fully understood. It is assumed that under combustion conditions, young soot particles are formed by nucleation of aromatic and polyaromatic hydrocarbons (PAHs) with subsequent growth of particles due to the addition of new molecules.

2018 ◽  
pp. 277 ◽  
Author(s):  
Z.A. Mansurov

Soot formation processes have been studied for more than 100 years, they include empirical and phenomenological description of conversion of various fuels to soot particles. This article provides an overview of current state of soot formation foundations, including the chemistry of soot nucleation, nucleation, mass growth as well as size of soot particles. Consideration of this issue shows that a great progress has been made, but there is still a lot of ambiguity in many areas of our knowledge. This concerns the role of aromatic molecules and radicals in nucleation and subsequent growth mass in laminar pre-mixed flames. Along with environmental problems, in recent time there are considered soot particles as an environment for nanomaterial synthesis, such as fullerenes, carbon nanotubes and graphenes. In this regard, a complete scheme of nanomaterials formation in mode of soot formation has been developed.


2013 ◽  
Vol 10 (3) ◽  
pp. 1071-1081
Author(s):  
Baghdad Science Journal

Density Functional Theory (DFT) calculations were carried out to study the thermal cracking for acenaphthylene molecule to estimate the bond energies for breaking C8b-C5a , C5a-C5 , C5-C4 , and C5-H5 bonds as well as the activation energies. It was found that for C8b-C5a , C5-C4 , and C5-H5 reactions it is often possible to identify one pathway for bond breakage through the singlet or triplet states. The atomic charges , dipole moment and nuclear – nuclear repulsion energy supported the breakage bond .Also, it was found that the activation energy value for C5-H5 bond breakage is lower than that required for C8b-C5a , C5a-C5 , C5-C4 bonds which refer to C5-H5 bond in acenaphthylene molecule are weaker than C8b-C5a , C5a-C5 , C5-C4 bonds .It is reasonable to presume that C5-H5 bonds are broken first when a acenaphthylene molecule is exposed to thermal cracking. It seems that the characteristic planarity for the polyaromatic hydrocarbons is an important factor to acquire the molecule structure of the required stability along the reaction path . The trends in the bond energies and the configuration structures are discussed .


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiao Jiang ◽  
Tat Leung Chan

Purpose The purpose of this paper is to study the soot formation and evolution by using this newly developed Lagrangian particle tracking with weighted fraction Monte Carlo (LPT-WFMC) method. Design/methodology/approach The weighted soot particles are used in this MC framework and is tracked using Lagrangian approach. A detailed soot model based on the LPT-WFMC method is used to study the soot formation and evolution in ethylene laminar premixed flames. Findings The LPT-WFMC method is validated by both experimental and numerical results of the direct simulation Monte Carlo (DSMC) and Multi-Monte Carlo (MMC) methods. Compared with DSMC and MMC methods, the stochastic error analysis shows this new LPT-WFMC method could further extend the particle size distributions (PSDs) and improve the accuracy for predicting soot PSDs at larger particle size regime. Originality/value Compared with conventional weighted particle schemes, the weight distributions in LPT-WFMC method are adjustable by adopting different fraction functions. As a result, the number of numerical soot particles in each size interval could be also adjustable. The stochastic error of PSDs in larger particle size regime can also be minimized by increasing the number of numerical soot particles at larger size interval.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3993
Author(s):  
Elia Distaso ◽  
Riccardo Amirante ◽  
Giuseppe Calò ◽  
Pietro De Palma ◽  
Paolo Tamburrano

An experimental study has been conducted to provide a characterization of the transformations that particle size distributions and the number density of soot particles can encounter along the exhaust line of a modern EURO VI compliant heavy-duty engine, fueled with compressed natural gas. Being aware of the particles history in the exhausts can be of utmost importance to understand soot formation and oxidation dynamics, so that, new strategies for further reducing these emissions can be formulated and present and future regulations met. To this purpose, particle samples were collected from several points along the exhaust pipe, namely upstream and downstream of each device the exhaust gases interact with. The engine was turbocharged and equipped with a two-stage after-treatment system. The measurements were carried out in steady conditions while the engine operated in stoichiometric conditions. Particle emissions were measured using a fast-response particle size spectrometer (DMS500) so that size information was analyzed in the range between 5 and 1000 nm. Particle mass information was derived from size distribution data using a correlation available in the literature. The reported results provide more insight on the particle emission process related to natural gas engines and, in particular, point out the effects that the turbine and the after-treatment devices produce on soot particles. Furthermore, the reported observations suggest that soot particles might not derive only from the fuel, namely, external sources, such as lubricant oil, might have a relevant role in soot formation.


2006 ◽  
Vol 7 (2) ◽  
pp. 93-101 ◽  
Author(s):  
T Aizawa ◽  
H Kosaka

In order to investigate the early soot formation process in a diesel spray flame, two-dimensional imaging and spectral measurements of laser-induced emission from soot precursors and soot particles in a transient spray flame achieved in a rapid compression machine (2.8 MPa, 710 K) were conducted. The 3rd harmonic (355 nm) and 4th harmonic (266 nm) Nd: YAG (neodymium-doped yttrium aluminium garnet) laser pulses were used as the light source for laser-induced fluorescence (LIF) from soot precursors and laser-induced incandescence (LII) from soot particles in the spray flame. The two-dimensional imaging covered an area between 30 and 55 mm downstream from the nozzle orifice. The results of two-dimensional imaging showed that strong laser-induced emission excited at 266 nm appears only on the laser incident side of the spray flame, in contrast to an entire cross-sectional distribution of the emission excited at 355 nm, indicating that 266 nm-excited emitters are stronger absorbers and more abundant than 355 nm-excited emitters in the spray flame. The spectral measurements were conducted at three different positions, 35, 45, and 55 mm downstream from the nozzle orifice, along the central axis of the spray, where LIF from soot precursors was observed in a previous two-dimensional imaging study. The spectra measured in upstream positions showed that broad emission peaked at around 400–500 nm, which is attributable to LIF from polycyclic aromatic hydrocarbons (PAHs). The spectra measured in downstream positions appeared very much like grey-body emission from soot particles.


2006 ◽  
Vol 129 (3) ◽  
pp. 877-884 ◽  
Author(s):  
Joan Boulanger ◽  
Fengshan Liu ◽  
W. Stuart Neill ◽  
Gregory J. Smallwood

Soot formation phenomenon is far from being fully understood today and models available for simulation of soot in practical combustion devices remain of relatively limited success, despite significant progresses made over the last decade. The extremely high demand of computing time of detailed soot models make them unrealistic for simulation of multidimensional, transient, and turbulent diesel engine combustion. Hence, most of the investigations conducted in real configuration such as multidimensional diesel engines simulation utilize coarse modeling, the advantages of which are an easy implementation and low computational cost. In this study, a phenomenological three-equation soot model was developed for modeling soot formation in diesel engine combustion based on considerations of acceptable computational demand and a qualitative description of the main features of the physics of soot formation. The model was developed based on that of Tesner et al. and was implemented into the commercial STAR-CD™ CFD package. Application of this model was demonstrated in the modeling of soot formation in a single-cylinder research version of Caterpillar 3400 series diesel engine with exhaust gas recirculation (EGR). Numerical results show that the new soot formulation overcomes most of the drawbacks in the existing soot models dedicated to this kind of engineering task and demonstrates a robust and consistent behavior with experimental observation. Compared to the existing soot models for engine combustion modeling, some distinct features of the new soot model include: no soot is formed at low temperature, minimal model parameter adjustment for application to different fuels, and there is no need to prescribe the soot particle size. At the end of expansion, soot is predicted to exist in two separate regions in the cylinder: in the near wall region and in the center part of the cylinder. The existence of soot in the near wall region is a result of reduced soot oxidation rate through heat loss. They are the source of the biggest primary particles released at the end of the combustion process. The center part of the cylinder is populated by smaller soot particles, which are created since the early stages of the combustion process but also subject to intense oxidation. The qualitative effect of EGR is to increase the size of soot particles as well as their number density. This is linked to the lower in-cylinder temperature and a reduced amount of air.


Sign in / Sign up

Export Citation Format

Share Document