scholarly journals Elicitor induction of defence genes and reduction of bacterial canker in kiwifruit

2017 ◽  
Vol 70 ◽  
pp. 272-284 ◽  
Author(s):  
K.V. Wurms ◽  
E. Gould ◽  
A. Ah Chee ◽  
J. Taylor ◽  
B. Curran ◽  
...  

Pseudomonas syringae pv. actinidiae (Psa), which causes bacterial canker, is the most serious global pathogen of kiwifruit. Like most bacterial pathogens, control options are limited, but elicitors can reduce disease significantly, particularly those that induce the salicylic acid (SA) pathway. Acibenzolar-S-methyl (ASM), a SA analogue, is one of the most effective elicitors for Psa control. In this study, real-time PCR (qPCR) was used to measure the expression of 18 putative defence genes in Actinidia chinensis var. chinensis ‘Hort16A’ in response to Psa and ASM. Application of ASM led to up-regulation of RPM1 interacting protein 4 (RIN4), phenylalanine ammonia lyase (PAL), a hypersensitivity-induced response protein (HIRP), and β-1,3-glucosidase. Expression of PAL and HIRP was further enhanced when elicitor application and Psa-inoculation were combined. Elevated gene expression was correlated with decreased disease expression, and supports the hypothesis that elicitor-treated plants are primed to react more rapidly and/or strongly to pathogens.

Plants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 624 ◽  
Author(s):  
Vicente Montejano-Ramírez ◽  
Ernesto García-Pineda ◽  
Eduardo Valencia-Cantero

Plants face a variety of biotic and abiotic stresses including attack by microbial phytopathogens and nutrient deficiencies. Some bacterial volatile organic compounds (VOCs) activate defense and iron-deficiency responses in plants. To establish a relationship between defense and iron deficiency through VOCs, we identified key genes in the defense and iron-deprivation responses of the legume model Medicago truncatula and evaluated the effect of the rhizobacterial VOC N,N-dimethylhexadecylamine (DMHDA) on the gene expression in these pathways by RT-qPCR. DMHDA increased M. truncatula growth 1.5-fold under both iron-sufficient and iron-deficient conditions compared with untreated plants, whereas salicylic acid and jasmonic acid decreased growth. Iron-deficiency induced iron uptake and defense gene expression. Moreover, the effect was greater in combination with DMHDA. Salicylic acid, Pseudomonas syringae, jasmonic acid, and Botrytis cinerea had inhibitory effects on growth and iron response gene expression but activated defense genes. Taken together, our results showed that the VOC DMHDA activates defense and iron-deprivation pathways while inducing a growth promoting effect unlike conventional phytohormones, highlighting that DMHDA does not mimic jasmonic acid but induces an alternative pathway. This is a novel aspect in the complex interactions between biotic and abiotic stresses.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 136 ◽  
Author(s):  
Loredana Scalschi ◽  
Eugenio Llorens ◽  
Pilar García-Agustín ◽  
Begonya Vicedo

The jasmonic acid pathway has been considered as the backbone of the response against necrotrophic pathogens. However, a hemi-biotrophic pathogen, such as Pseudomonas syringae, has taken advantage of the crosstalk between the different plant hormones in order to manipulate the responses for its own interest. Despite that, the way in which Pseudomonas syringae releases coronatine to activate jasmonic acid-derived responses and block the activation of salicylic acid-mediated responses is widely known. However, the implication of the jasmonic intermediates in the plant-Pseudomonas interaction is not studied yet. In this work, we analyzed the response of both, plant and bacteria using SiOPR3 tomato plants. Interestingly, SiOPR3 plants are more resistant to infection with Pseudomonas. The gene expression of bacteria showed that, in SiOPR3 plants, the activation of pathogenicity is repressed in comparison to wild type plants, suggesting that the jasmonic acid pathway might play a role in the pathogenicity of the bacteria. Moreover, treatments with JA restore the susceptibility as well as activate the expression of bacterial pathogenicity genes. The observed results suggest that a complete jasmonic acid pathway is necessary for the susceptibility of tomato plants to Pseudomonas syringae.


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1350
Author(s):  
Tao Wang ◽  
Zhan-Hui Jia ◽  
Ji-Yu Zhang ◽  
Min Liu ◽  
Zhong-Ren Guo ◽  
...  

Nucleotide-binding site and leucine-rich repeat (NBS-LRR) genes represent the most important disease resistance genes in plants. The genome sequence of kiwifruit (Actinidia chinensis) provides resources for the characterization of NBS-LRR genes and identification of new R-genes in kiwifruit. In the present study, we identified 100 NBS-LRR genes in the kiwifruit genome and they were grouped into six distinct classes based on their domain architecture. Of the 100 genes, 79 are truncated non-regular NBS-LRR genes. Except for 37 NBS-LRR genes with no location information, the remaining 63 genes are distributed unevenly across 18 kiwifruit chromosomes and 38.01% of them are present in clusters. Seventeen families of cis-acting elements were identified in the promoters of the NBS-LRR genes, including AP2, NAC, ERF and MYB. Pseudomonas syringae pv. actinidiae (pathogen of the kiwifruit bacterial canker) infection induced differential expressions of 16 detected NBS-LRR genes and three of them are involved in plant immunity responses. Our study provides insight of the NBS-LRR genes in kiwifruit and a resource for the identification of new R-genes in the fruit.


2014 ◽  
Vol 171 (11) ◽  
pp. 895-902 ◽  
Author(s):  
Kaede C. Wada ◽  
Kaori Mizuuchi ◽  
Aya Koshio ◽  
Kentaro Kaneko ◽  
Toshiaki Mitsui ◽  
...  

2000 ◽  
Vol 13 (5) ◽  
pp. 503-511 ◽  
Author(s):  
Vaijayanti Gupta ◽  
Michael G. Willits ◽  
Jane Glazebrook

The Arabidopsis enhanced disease susceptibility 4 (eds4) mutation causes enhanced susceptibility to infection by the bacterial pathogen Pseudomonas syringae pv. Maculicola ES4326 (Psm ES4326). Gene-for-gene resistance to bacteria carrying the avirulence gene avrRpt2 is not significantly affected by eds4. Plants homozygous for eds4 exhibit reduced expression of the pathogenesis-related gene PR-1 after infection by Psm ES4326, weakened responses to treatment with the signal molecule salicylic acid (SA), impairment of the systemic acquired resistance response, and reduced accumulation of SA after infection with Psm ES4326. These phenotypes indicate that EDS4 plays a role in SA-dependent signaling. SA has been shown to have a negative effect on activation of gene expression by the signal molecule jasmonic acid (JA). Two mutations that cause reduced SA levels, eds4 and pad4, cause heightened responses to inducers of JA-dependent gene expression, providing genetic evidence to support the idea that SA interferes with JA-dependent signaling. Two possible working models of the role of EDS4 in governing activation of defense responses are presented.


2004 ◽  
Vol 17 (5) ◽  
pp. 511-520 ◽  
Author(s):  
Grace I. Jurkowski ◽  
Roger K. Smith ◽  
I-ching Yu ◽  
Jong Hyun Ham ◽  
Shashi B. Sharma ◽  
...  

A previous mutant screen identified Arabidopsis dnd1 and dnd2 “defense, no death” mutants, which exhibit loss of hypersensitive response (HR) cell death without loss of gene-for-gene resistance. The dnd1 phenotype is caused by mutation of the gene encoding cyclic nucleotide-gated (CNG) ion channel AtCNGC2. This study characterizes dnd2 plants. Even in the presence of high titers of Pseudomonas syringae expressing avrRpt2, most leaf mesophyll cells in the dnd2 mutant exhibited no HR. These plants retained strong RPS2-, RPM1-, or RPS4-mediated restriction of P. syringae pathogen growth. Mutant dnd2 plants also exhibited enhanced broad-spectrum resistance against virulent P. syringae and constitutively elevated levels of salicylic acid, and pathogenesis-related (PR) gene expression. Unlike the wild type, dnd2 plants responding to virulent and avirulent P. syringae exhibited elevated expression of both salicylatedependent PR-1 and jasmonate and ethylene—dependent PDF1.2. Introduction of nahG+ (salicylate hydroxylase) into the dnd2 background, which removes salicylic acid and causes other defense alterations, eliminated constitutive disease resistance and PR gene expression but only weakly impacted the HR¯ phenotype. Map-based cloning revealed that dnd2 phenotypes are caused by mutation of a second CNG ion channel gene, AtCNGC4. Hence, loss of either of two functionally nonredundant CNG ion channels can cause dnd phenotypes. The dnd mutants provide a unique genetic background for dissection of defense signaling.


2021 ◽  
Vol 22 (22) ◽  
pp. 12197
Author(s):  
Nengxu Sun ◽  
Xiangjiu Kong ◽  
Yueyan Liu ◽  
Tingting Gong ◽  
Xiaoyong Gu ◽  
...  

Salicylic acid (SA) and jasmonic acid (JA) are essential plant immune hormones, which could induce plant resistance to multiple pathogens. However, whether common components are employed by both SA and JA to induce defense is largely unknown. In this study, we found that the enhanced disease susceptibility 8 (EDS8) mutant was compromised in plant defenses to hemibiotrophic pathogen Pseudomonas syringae pv. maculicola ES4326 and necrotrophic pathogen Botrytis cinerea, and was deficient in plant responses to both SA and JA. The EDS8 was identified to be THO1, which encodes a subunit of the THO/TREX complex, by using mapping-by-sequencing. To check whether the EDS8 itself or the THO/TREX complex mediates SA and JA signaling, the mutant of another subunit of the THO/TREX complex, THO3, was tested. THO3 mutation reduced both SA and JA induced defenses, indicating that the THO/TREX complex is critical for plant responses to these two hormones. We further proved that the THO/TREX interacting protein SERRATE, a factor regulating alternative splicing (AS), was involved in plant responses to SA and JA. Thus, the AS events in the eds8 mutant after SA or JA treatment were determined, and we found that the SA and JA induced different alternative splicing events were majorly modulated by EDS8. In summary, our study proves that the THO/TREX complex active in AS is involved in both SA and JA induced plant defenses.


Sign in / Sign up

Export Citation Format

Share Document