Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyase and the endogenous content of salicylic acid to induce flowering in pharbitis

2014 ◽  
Vol 171 (11) ◽  
pp. 895-902 ◽  
Author(s):  
Kaede C. Wada ◽  
Kaori Mizuuchi ◽  
Aya Koshio ◽  
Kentaro Kaneko ◽  
Toshiaki Mitsui ◽  
...  
2003 ◽  
Vol 15 (3) ◽  
pp. 129-134 ◽  
Author(s):  
Ângela Diniz Campos ◽  
Alfredo Gui Ferreira ◽  
Magdolna Maria Vozári Hampe ◽  
Irajá Ferreira Antunes ◽  
Nely Brancão ◽  
...  

The activities of the enzymes chalcone synthase (CHS) and phenylalanine ammonia-lyase (PAL) were measured in leaf extracts obtained from four cultivars of the common bean (AB 136, Rio Tibagi, Carioca and Macanudo). Two stages of plant development were examined: plantlets (V2) and the onset of blooming (R6). Initially, the plants were either treated with salicylic acid or inoculated with the delta race of Colletotrichum lindemuthianum (inductive fungus) and after three days they were evaluated for enzyme activity. Afterwards, all plants were inoculated (challenged) with the virulent pathotype 33/95 of C. lindemuthianum except for the water control. Five days later, the activities of PAL and CHS were evaluated. There were significant changes in the activities of both enzymes three days after treatment with salicylic acid or inductive fungus when compared to the control. Five days after inoculation with with the virulent pathotype 33/95 of C. lindemuthianum CHS activity in the Macanudo was similar to control plants that were not treated with salicylic acid or the inductive fungus but inoculated with 33/95 C. lindemuthianum. The increase in enzyme activity after challenge with 33/95 C. lindemuthianum was greatest for the salicylic acid treatment in the cultivar AB 136, followed by Rio Tibagi and Carioca.


Biologia ◽  
2017 ◽  
Vol 72 (1) ◽  
Author(s):  
Anna Mrázová ◽  
Sefelaem Assefa Belay ◽  
Adriana Eliášová ◽  
Carmen Perez-Delgado ◽  
Mária Kaducová ◽  
...  

AbstractIn the present work the gene expression levels and enzyme activity of phenylalanine-ammonia-lyase (PAL) were investigated in plants of the model legume


2017 ◽  
Vol 70 ◽  
pp. 272-284 ◽  
Author(s):  
K.V. Wurms ◽  
E. Gould ◽  
A. Ah Chee ◽  
J. Taylor ◽  
B. Curran ◽  
...  

Pseudomonas syringae pv. actinidiae (Psa), which causes bacterial canker, is the most serious global pathogen of kiwifruit. Like most bacterial pathogens, control options are limited, but elicitors can reduce disease significantly, particularly those that induce the salicylic acid (SA) pathway. Acibenzolar-S-methyl (ASM), a SA analogue, is one of the most effective elicitors for Psa control. In this study, real-time PCR (qPCR) was used to measure the expression of 18 putative defence genes in Actinidia chinensis var. chinensis ‘Hort16A’ in response to Psa and ASM. Application of ASM led to up-regulation of RPM1 interacting protein 4 (RIN4), phenylalanine ammonia lyase (PAL), a hypersensitivity-induced response protein (HIRP), and β-1,3-glucosidase. Expression of PAL and HIRP was further enhanced when elicitor application and Psa-inoculation were combined. Elevated gene expression was correlated with decreased disease expression, and supports the hypothesis that elicitor-treated plants are primed to react more rapidly and/or strongly to pathogens.


2021 ◽  
Vol 7 (11) ◽  
pp. eaba1187
Author(s):  
Rina Baba ◽  
Satoru Matsuda ◽  
Yuuichi Arakawa ◽  
Ryuji Yamada ◽  
Noriko Suzuki ◽  
...  

Persistent epigenetic dysregulation may underlie the pathophysiology of neurodevelopmental disorders, such as autism spectrum disorder (ASD). Here, we show that the inhibition of lysine-specific demethylase 1 (LSD1) enzyme activity normalizes aberrant epigenetic control of gene expression in neurodevelopmental disorders. Maternal exposure to valproate or poly I:C caused sustained dysregulation of gene expression in the brain and ASD-like social and cognitive deficits after birth in rodents. Unexpectedly, a specific inhibitor of LSD1 enzyme activity, 5-((1R,2R)-2-((cyclopropylmethyl)amino)cyclopropyl)-N-(tetrahydro-2H-pyran-4-yl)thiophene-3-carboxamide hydrochloride (TAK-418), almost completely normalized the dysregulated gene expression in the brain and ameliorated some ASD-like behaviors in these models. The genes modulated by TAK-418 were almost completely different across the models and their ages. These results suggest that LSD1 enzyme activity may stabilize the aberrant epigenetic machinery in neurodevelopmental disorders, and the inhibition of LSD1 enzyme activity may be the master key to recover gene expression homeostasis. TAK-418 may benefit patients with neurodevelopmental disorders.


Author(s):  
Huaming He ◽  
Jordi Denecker ◽  
Katrien Van Der Kelen ◽  
Patrick Willems ◽  
Robin Pottie ◽  
...  

Abstract Signaling events triggered by hydrogen peroxide (H2O2) regulate plant growth and defense by orchestrating a genome-wide transcriptional reprogramming. However, the specific mechanisms that govern H2O2-dependent gene expression are still poorly understood. Here, we identify the Arabidopsis Mediator complex subunit MED8 as a regulator of H2O2 responses. The introduction of the med8 mutation in a constitutive oxidative stress genetic background (catalase-deficient, cat2) was associated with enhanced activation of the salicylic acid pathway and accelerated cell death. Interestingly, med8 seedlings were more tolerant to oxidative stress generated by the herbicide methyl viologen (MV) and exhibited transcriptional hyperactivation of defense signaling, in particular salicylic acid- and jasmonic acid-related pathways. The med8-triggered tolerance to MV was manipulated by the introduction of secondary mutations in salicylic acid and jasmonic acid pathways. In addition, analysis of the Mediator interactome revealed interactions with components involved in mRNA processing and microRNA biogenesis, hence expanding the role of Mediator beyond transcription. Notably, MED8 interacted with the transcriptional regulator NEGATIVE ON TATA-LESS, NOT2, to control the expression of H2O2-inducible genes and stress responses. Our work establishes MED8 as a component regulating oxidative stress responses and demonstrates that it acts as a negative regulator of H2O2-driven activation of defense gene expression.


1998 ◽  
Vol 275 (4) ◽  
pp. G717-G722 ◽  
Author(s):  
Wisam F. Zakko ◽  
Carl L. Berg ◽  
John L. Gollan ◽  
Richard M. Green

Gluconeogenesis and glycogenolysis are essential hepatic functions required for glucose homeostasis. During the initial phase of hepatic regeneration, the immediate-early genes (IEG) are rapidly expressed, and the IEG RL-1 encodes for glucose-6-phosphatase (G-6- Pase). G-6- Pase is a microsomal enzyme essential for gluconeogenesis and glycogenolysis. This study employs a partial-hepatectomy model to examine the expression and activity of G-6- Pase. After partial hepatectomy, rat hepatic G-6- Pase gene expression is transcriptionally regulated, and mRNA levels are increased ≈30-fold. However, in contrast to this rapid gene induction, microsomal enzyme activity is unchanged after partial hepatectomy. Western blotting demonstrates that microsomal G-6- Pase protein expression is also unchanged after partial hepatectomy, and similar results are also noted in whole liver homogenate. Thus, despite marked induction in gene expression of the IEG G-6- Pase after partial hepatectomy, protein expression and enzyme activity remain unchanged. These data indicate that, although this hepatocyte IEG is transcriptionally regulated, the physiologically important level of regulation is posttranscriptional. This highlights the importance of correlating gene expression of IEG with protein expression and physiological function.


2017 ◽  
Vol 2017 ◽  
pp. 1-15 ◽  
Author(s):  
Krzysztof Michalak ◽  
Aleksandra Sobolewska-Włodarczyk ◽  
Marcin Włodarczyk ◽  
Justyna Sobolewska ◽  
Piotr Woźniak ◽  
...  

Long-term fluoroquinolone-associated disability (FQAD) after fluoroquinolone (FQ) antibiotic therapy appears in recent years as a significant medical and social problem, because patients suffer for many years after prescribed antimicrobial FQ treatment from tiredness, concentration problems, neuropathies, tendinopathies, and other symptoms. The knowledge about the molecular activity of FQs in the cells remains unclear in many details. The effective treatment of this chronic state remains difficult and not effective. The current paper reviews the pathobiochemical properties of FQs, hints the directions for further research, and reviews the research concerning the proposed treatment of patients. Based on the analysis of literature, the main directions of possible effective treatment of FQAD are proposed: (a) reduction of the oxidative stress, (b) restoring reduced mitochondrion potential ΔΨm, (c) supplementation of uni- and bivalent cations that are chelated by FQs and probably ineffectively transported to the cell (caution must be paid to Fe and Cu because they may generate Fenton reaction), (d) stimulating the mitochondrial proliferation, (e) removing FQs permanently accumulated in the cells (if this phenomenon takes place), and (f) regulating the disturbed gene expression and enzyme activity.


Sign in / Sign up

Export Citation Format

Share Document