Synchronous Addition of Antenna Field Signals with a Shift of Sampling Pulses during Spacecraft Tracking by Target Designations with Allowance for the Inertia of Antenna Motion

Author(s):  
S. I. Vatutin ◽  
◽  
P. A. Kozin ◽  

The method of synchronous addition of signals of separate antennas was proposed previously for the aggregation of relatively small-scale aperture antennas into a single digital antenna array (digital antenna field) with a combined area for receiving telemetry signals from spacecraft when antennas are mutually spaced by a distance big enough for them not to shade one another. The method is based on the idea of compensating mutual delays between the antennas of the received signal by a corresponding shift of the sampling pulses of the signals of different antennas. The present paper demonstrates the efficacy of the method in the mode of spacecraft tracking by target designations in orbits of global navigation systems with allowance for the inertia of antenna motion. It is shown that in spacecraft tracking mode, which is close to the real one, this method gives a signal-to-noise ratio and bit-error probability closer to the theoretical limit than the values obtained for the idealized mode (analyzed earlier), which equates the angular coordinates and velocities of the antennas to the calculated angles and velocities of spacecraft in target designation nodes.

Author(s):  
S. I. Vatutin ◽  

The method of synchronous addition of signals of separate antennas was proposed previously for the aggregation of relatively small-scale aperture antennas into a single digital antenna array (digital antenna field) with a combined area for receiving telemetry signals from spacecraft. In this case, the antennas are mutually spaced by a big enough distance in order to not shade one another. The method is based on the idea of compensating the mutual delays between the antennas of the received signal by a corresponding shift of the sampling pulses of the signals of different antennas. This article demonstrates the method’s workability in idealized mode of spacecraft tracking by target designations on orbits of global navigation systems. It is shown that with the up-to-date level of impulse technology development the method of synchronous addition of antenna signals with a shift of sampling pulses is potentially capable of ensuring the reception of telemetry information from deep-space spacecraft at rates approximately 6 times higher than those of the classic Delta-DOR method.


Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3014
Author(s):  
Weijun Cheng ◽  
Xiaoting Wang ◽  
Tengfei Ma ◽  
Gang Wang

In some emerging wireless applications, such as wearable communication and low-power sensor network applications, wireless devices or nodes not only require simple physical implementation approaches but also require certain reliable receiver techniques to overcome the effects of multipath or shadowed fading. Switched diversity combining (SDC) systems could be a simple and promising solution to the above requirements. Recently, a Fisher–Snedecor ℱ composited fading model has gained much interest because of its modeling accuracy and calculation tractability. However, the performance of SDC systems over ℱ fading channels has not yet been analyzed in the open literature. To this end, this paper presents a systematic analysis of SDC systems over ℱ fading channels, including dual-branch switch-and-stay combining (SSC), multibranch switch-and examine combining (SEC), and SEC with post-examining selection (SECps) systems. We first investigate the statistical characteristics of univariate and bivariate ℱ distributions. Then, these statistical expressions are introduced into the above SDC systems and the statistical metrics of the output signal-to-noise ratio (SNR) for these systems are deduced in different ℱ fading scenarios. Thirdly, certain exact and novel expressions of performance criteria, such as the outage probability, the average bit error probability and average symbol error probability, as well as the average channel capacity for SSC, SEC, and SECps are derived. To find the optimum performance, optimal analysis is performed for the independent and identically distributed cases. Finally, numerical evaluation and simulations are carried out to demonstrate the validity of the theoretical analysis under various ℱ fading scenarios. According to the obtained results, the multipath fading parameter has more influence on the performance of SDC systems than the shadowing parameter, the correlation coefficient, or the average SNR. Importantly, the SDC systems can provide switched diversity gains only when the switching threshold is not too large or too small compared to the average SNR.


MRS Advances ◽  
2017 ◽  
Vol 2 (49) ◽  
pp. 2661-2668
Author(s):  
Horia Gavrila ◽  
Doina Elena Gavrila

ABSTRACTWhile the most promising longitudinal recording systems cannot surpass the theoretical limit of about 200 Gb/in2 for areal recording density and the demand for higher densities is permanently increasing, the perpendicular magnetic recording constitutes the realistic issue to the longitudinal one. The perpendicular magnetic recording offers significant advantages, the most important being stronger write and read fields, and therefore the use of media of higher anisotropy, smaller grain size, higher signal-to-noise ratio, and a better thermal stability. Unfortunately, the perpendicular recording has to cope some important physical and technological difficulties. To overcome them, many ingenious solutions were proposed. In this paper the coupled granular/continuous (CGC) media, a subtle association of the continuous and, respectively, granular media, are analysed from the viewpoint of their magnetic and recording properties. The challenges and possible improvements of CGC media are discussed.


2021 ◽  
pp. 464-468
Author(s):  
A.D. Tikhonov ◽  
A.A. Kochiev

The article deals with determination of coordinates using global navigation systems, and application of the PPP data processing algorithm to obtain coordinates. The authors conducted an experiment illustrating the algorithm accuracy.


2017 ◽  
Vol 5 (4) ◽  
pp. 6
Author(s):  
Tomáš Kubáč ◽  
Jakub Hospodka

Global navigation satellite systems are increasingly part of our lives and many industries including aviation. Glider flying is no exception in this trend. Global navigation satellite systems were part of gliding since the early 1990s. First as official recording devices for simple evidence of sporting performances, then as navigation systems, anti-collision systems and emergency location transmitters. Development of recording application was initiated and supported by International Gliding Commission of World Air Sports Federation in way of certifications for flight recorders. The use of navigation and other modern instruments in gliders has brought many benefits but also risks. However, the advantages outweigh the disadvantages and these systems are now integral part of gliding. With this wide usage of global navigation satellite systems devices, there is great many possibilities how and in which way one can use these systems. Pilots must orient themselves in varied selection of products, which they can use to choose one solution, that fits him. Therefore, to find out how and if pilots use these devices, we created questionnaire survey among 143 Czech glider pilots. We found out, that 84% of them are using global navigation satellite systems devices for official record of flight and for navigation as well. More than half of pilots is using free, not built-in devices. Most common devices are mobile phones up to 5 inches of screen diagonal in combination with approved flight recorder without display. If pilots use mobile device for navigation, 52% of them is using one with Windows Mobile operating system, 33% use Android. Navigational software on these mobile devices is then almost tied between SeeYou Mobile, XCSoar and LK8000. Knowledge about usage preference of global navigation systems devices should help pilots with selection and overall orientation in subject.


2021 ◽  
Author(s):  
Athina Peidou ◽  
Felix Landerer ◽  
David Wiese ◽  
Matthias Ellmer ◽  
Eugene Fahnestock ◽  
...  

<p>The performance of Gravity Recovery and Climate Experiment Follow‐On (GRACE-FO) laser ranging interferometer (LRI) system is assessed in both space and frequency domains. With LRI’s measurement sensitivity being as small as 0.05 nm/s<sup>2</sup> at GRACE-FO altitude we perform a thorough assessment on the ability of the instrument to detect real small-scale high-frequency gravity signals. Analysis of range acceleration measurements along the orbit for nearly one year of daily solutions suggests that LRI can detect signals induced by mass perturbation up to 26 mHz, i.e., ~145 km spatial resolution. Additionally, high frequency signals that are not adequately modeled by dealiasing models are clearly detected and their magnitude is shown to reach 2-3 nm/s<sup>2</sup>. The alternative K‐band microwave ranging system (KBR) is also examined and results demonstrate the inability of KBR to retrieve signals above 15mHz (i.e., shorter than ~200 km) as the noise of the KBR range acceleration increases rapidly. Overall, the first stream of LRI measurements shows that the high signal to noise ratio allows for detection of mass transfers in finer scales, however the ability to fully exploit the high-quality signal measured by the LRI in Level 2 products is still constrained by noise of background models and other onboard instrumentation and measurement system errors.</p><p>Copyright Acknowledgment: This work was performed at the California Institute of Technology's Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration's Cryosphere Science Program.</p>


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Jia Liu ◽  
Mingyu Zhang ◽  
Chaoyong Wang ◽  
Rongjun Chen ◽  
Xiaofeng An ◽  
...  

In this paper, upper bound on the probability of maximum a posteriori (MAP) decoding error for systematic binary linear codes over additive white Gaussian noise (AWGN) channels is proposed. The proposed bound on the bit error probability is derived with the framework of Gallager’s first bounding technique (GFBT), where the Gallager region is defined to be an irregular high-dimensional geometry by using a list decoding algorithm. The proposed bound on the bit error probability requires only the knowledge of weight spectra, which is helpful when the input-output weight enumerating function (IOWEF) is not available. Numerical results show that the proposed bound on the bit error probability matches well with the maximum-likelihood (ML) decoding simulation approach especially in the high signal-to-noise ratio (SNR) region, which is better than the recently proposed Ma bound.


2019 ◽  
Vol 13 (4) ◽  
pp. 279-289 ◽  
Author(s):  
Alexandra Avram ◽  
Volker Schwieger ◽  
Noha El Gemayel

Abstract Current trends like Autonomous Driving (AD) increase the need for a precise, reliable, and continuous position at high velocities. In both natural and man-made environments, Global Navigation Satellite System (GNSS) signals suffer challenges such as multipath, attenuation, or loss-of-lock. As Highway Assist and Highway Pilot are AD next steps, multipath knowledge is necessary for this typical user-case and kinematic situations. This paper presents a multipath performance analysis for GPS and Galileo satellites in static, slow, and high kinematic scenarios. The data is provided from car test-drives in both controlled and unrestricted, near-natural environments. The Code-Minus-Carrier (CMC) and cycle-slip implementations are validated with measurement data from consecutive days. Multipath statistical models based on satellite elevation are evaluated for the three investigated scenarios. Static models derived from the car setup measurements for GPS L1, L2 and Galileo E1 and E5b show a good agreement with a state-of-the-art model as well as the enhanced Galileo signals performance. Slow kinematic multipath results in a controlled environment showed an improvement for both navigation systems compared to the static measurements at the same place. This result is confirmed by static and slow kinematic multipath simulations with the same GNSS receiver. Post-processing analysis on highway measurements revealed a bigger multipath bias, compared to the open-sky static and slow kinematic measurement campaigns. Although less critical as urban or rural, this indicates the presence of multipath in this kind of environment as well. The impact of different parameters, including receiver architecture and Signal-to-noise ratio (SNR) are analyzed and discussed. Differential position (DGNSS) based on code is computed for each epoch and compared against GNSS/INS integrated position for all three measurement campaigns. The most significant 3D absolute error occurs where the greatest multipath envelope is found.


Sign in / Sign up

Export Citation Format

Share Document