Experimental results of multipath behavior for GPS L1-L2 and Galileo E1-E5b in static and kinematic scenarios

2019 ◽  
Vol 13 (4) ◽  
pp. 279-289 ◽  
Author(s):  
Alexandra Avram ◽  
Volker Schwieger ◽  
Noha El Gemayel

Abstract Current trends like Autonomous Driving (AD) increase the need for a precise, reliable, and continuous position at high velocities. In both natural and man-made environments, Global Navigation Satellite System (GNSS) signals suffer challenges such as multipath, attenuation, or loss-of-lock. As Highway Assist and Highway Pilot are AD next steps, multipath knowledge is necessary for this typical user-case and kinematic situations. This paper presents a multipath performance analysis for GPS and Galileo satellites in static, slow, and high kinematic scenarios. The data is provided from car test-drives in both controlled and unrestricted, near-natural environments. The Code-Minus-Carrier (CMC) and cycle-slip implementations are validated with measurement data from consecutive days. Multipath statistical models based on satellite elevation are evaluated for the three investigated scenarios. Static models derived from the car setup measurements for GPS L1, L2 and Galileo E1 and E5b show a good agreement with a state-of-the-art model as well as the enhanced Galileo signals performance. Slow kinematic multipath results in a controlled environment showed an improvement for both navigation systems compared to the static measurements at the same place. This result is confirmed by static and slow kinematic multipath simulations with the same GNSS receiver. Post-processing analysis on highway measurements revealed a bigger multipath bias, compared to the open-sky static and slow kinematic measurement campaigns. Although less critical as urban or rural, this indicates the presence of multipath in this kind of environment as well. The impact of different parameters, including receiver architecture and Signal-to-noise ratio (SNR) are analyzed and discussed. Differential position (DGNSS) based on code is computed for each epoch and compared against GNSS/INS integrated position for all three measurement campaigns. The most significant 3D absolute error occurs where the greatest multipath envelope is found.

Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2280 ◽  
Author(s):  
Sören Vogel ◽  
Hamza Alkhatib ◽  
Johannes Bureick ◽  
Rozhin Moftizadeh ◽  
Ingo Neumann

Georeferencing is an indispensable necessity regarding operating with kinematic multi-sensor systems (MSS) in various indoor and outdoor areas. Information from object space combined with various types of prior information (e.g., geometrical constraints) are beneficial especially in challenging environments where common solutions for pose estimation (e.g., global navigation satellite system or external tracking by a total station) are inapplicable, unreliable or inaccurate. Consequently, an iterated extended Kalman filter is used and a general georeferencing approach by means of recursive state estimation is introduced. This approach is open to several types of observation inputs and can deal with (non)linear systems and measurement models. The capability of using both explicit and implicit formulations of the relation between states and observations, and the consideration of (non)linear equality and inequality state constraints is a special feature. The framework presented is evaluated by an indoor kinematic MSS based on a terrestrial laser scanner. The focus here is on the impact of several different combinations of applied state constraints and the dependencies of two classes of inertial measurement units (IMU). The results presented are based on real measurement data combined with simulated IMU measurements.


2021 ◽  
Vol 13 (12) ◽  
pp. 2295
Author(s):  
Dominik Prochniewicz ◽  
Maciej Grzymala

Multipath is one of the major source of errors in precise Global Navigation Satellite System positioning. With the emergence of new navigation systems, such as Galileo, upgraded signals are progressively being used and are expected to provide greater resistance to the effects of multipath compared to legacy Global Positioning System (GPS) signals. The high quality of Galileo observations along with recent development of the Galileo space segment can therefore offer significant advantages to Galileo users in terms of the accuracy and reliability of positioning. The aim of this paper is to verify this hypothesis. The multipath impact was determined both for code and phase measurements as well as for positioning results. The code multipath error was determined using the Code-Minus-Carrier combination. The influence of multipath on phase observations and positioning error was determined using measurements on a very short baseline. In addition, the multipath was classified into two different types: specular and diffuse, using wavelet transform. The results confirm that the Galileo code observations are more resistant to the multipath effect than GPS observations. Among all of the observations examined, the lowest values of code multipath errors were recorded for the Galileo E5 signal. However, no advantage of Galileo over GPS was observed for phase observations and for the analysis of positioning results.


2014 ◽  
Vol 7 (6) ◽  
pp. 735-745 ◽  
Author(s):  
S. Irteza ◽  
E. Schäfer ◽  
R. Stephan ◽  
A. Hornbostel ◽  
M. A. Hein

A compact navigation receiver comprising a decoupled and matched four-element L1-band antenna array with an inter-element separation of a quarter of the free-space wavelength is presented in this paper. We investigate the impact of the decoupling and matching network on the robustness of the navigation receiver. It is observed that in order to achieve high robustness with a compact antenna array, it is necessary to employ a decoupling and matching network, particularly in case of three spatially separated interferers. Furthermore, we study the influence of the polarization impurity of the compact planar antenna array on the equivalent carrier-to-interference-plus-noise ratio (CINR) of the receiver when impinged with different numbers of diametrically polarized interference signals. It is shown that the higher-order modes possess strong polarization impurity, which may halve the available degrees-of-freedom for nulling in the presence of linear-polarized interferers, using a conventional null-steering algorithm. We verify the robustness of the designed compact receiver by means of a complete global-navigation-satellite-system demonstrator. It is shown that the maximum jammer power that is allowed us to maintain the CINR above 38 dBHz with three interferers can be improved by more than 10 dB if a decoupling and matching network is employed.


2016 ◽  
Vol 14 ◽  
pp. 1-9 ◽  
Author(s):  
Thorsten Schrader ◽  
Jochen Bredemeyer ◽  
Marius Mihalachi ◽  
Jan Rohde ◽  
Thomas Kleine-Ostmann

Abstract. Field strength or signal-in-space (SIS) measurements have been performed by using manned helicopters, aircrafts or from ground level using extendable masts. With the availability of unmanned aerial systems (UAS) such as multicopters a new versatile platform for SIS measurements is deployable. Larger types show up to eight individually driven electric motors and controllers (therefore called octocopter). They provide the ability to fly along predefined traces, to hover at waypoints and to initiate other actions when those have been reached. They provide self-levelling and stabilisation and moreover, they may gear at a point of interest regardless of their actual position, e.g. during their flight around a tower. Their payload mainly depends on the platform size and allows integration of complex measurement equipment. Upgrading their navigation capabilities including state-of-the-art global navigation satellite system (GNSS) and ground station transmitter (real-time kinematic – RTK) enables precise localisation of the UAS. For operation in electromagnetic harsh environments a shielding can be considered and integrated into the concept. This paper describes concept and design of an octocopter and its instrumentation, along with applications in recent projects, in which we measure and validate terrestrial navigation systems applied in air traffic and the weather forecast services. Among those are instrumentation landing systems (ILS), VHF omnidirectional radio ranges (VOR), airport traffic and weather radars as well as military surveillance radars, and UHF wind profilers. Especially to investigate the possible interaction of VORs and radars with single wind turbines (WT) or wind power plants has become a major request of economy, military and politics. Here, UAS can be deployed to deliver measurement data investigating this interaction. Once developed and setup to a certain extent, UAS are easy and cost-efficient to operate. Nonetheless, due to their compact size, UAS will have rather low interaction with the electromagnetic field to be measured compared to the operation of manned helicopters.


2021 ◽  
Vol 13 (10) ◽  
pp. 1981
Author(s):  
Ruike Ren ◽  
Hao Fu ◽  
Hanzhang Xue ◽  
Zhenping Sun ◽  
Kai Ding ◽  
...  

High-precision 3D maps play an important role in autonomous driving. The current mapping system performs well in most circumstances. However, it still encounters difficulties in the case of the Global Navigation Satellite System (GNSS) signal blockage, when surrounded by too many moving objects, or when mapping a featureless environment. In these challenging scenarios, either the global navigation approach or the local navigation approach will degenerate. With the aim of developing a degeneracy-aware robust mapping system, this paper analyzes the possible degeneration states for different navigation sources and proposes a new degeneration indicator for the point cloud registration algorithm. The proposed degeneracy indicator could then be seamlessly integrated into the factor graph-based mapping framework. Extensive experiments on real-world datasets demonstrate that the proposed 3D reconstruction system based on GNSS and Light Detection and Ranging (LiDAR) sensors can map challenging scenarios with high precision.


2021 ◽  
Vol 13 (15) ◽  
pp. 3014
Author(s):  
Feng Wang ◽  
Dongkai Yang ◽  
Guodong Zhang ◽  
Jin Xing ◽  
Bo Zhang ◽  
...  

Sea surface height can be measured with the delay between reflected and direct global navigation satellite system (GNSS) signals. The arrival time of a feature point, such as the waveform peak, the peak of the derivative waveform, and the fraction of the peak waveform is not the true arrival time of the specular signal; there is a bias between them. This paper aims to analyze and calibrate the bias to improve the accuracy of sea surface height measured by using the reflected signals of GPS CA, Galileo E1b and BeiDou B1I. First, the influencing factors of the delay bias, including the elevation angle, receiver height, wind speed, pseudorandom noise (PRN) code of GPS CA, Galileo E1b and BeiDou B1I, and the down-looking antenna pattern are explored based on the Z-V model. The results show that (1) with increasing elevation angle, receiver height, and wind speed, the delay bias tends to decrease; (2) the impact of the PRN code is uncoupled from the elevation angle, receiver height, and wind speed, so the delay biases of Galileo E1b and BeiDou B1I can be derived from that of GPS CA by multiplication by the constants 0.32 and 0.54, respectively; and (3) the influence of the down-looking antenna pattern on the delay bias is lower than 1 m, which is less than that of other factors; hence, the effect of the down-looking antenna pattern is ignored in this paper. Second, an analytical model and a neural network are proposed based on the assumption that the influence of all factors on the delay bias are uncoupled and coupled, respectively, to calibrate the delay bias. The results of the simulation and experiment show that compared to the meter-level bias before the calibration, the calibrated bias decreases the decimeter level. Based on the fact that the specular points of several satellites are visible to the down-looking antenna, the multi-observation method is proposed to calibrate the bias for the case of unknown wind speed, and the same calibration results can be obtained when the proper combination of satellites is selected.


2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Yuan Xu ◽  
Hao-Miao Zhou

A multiband printed loop mobile phone antenna for LTE/WWAN/GNSS application is presented. It covers seven communication bands (VSWR < 3) and GNSS band (VSWR < 1.5). The so-called GNSS (global navigation satellite system) band includes COMPASS, GALILEO, GPS, and GLONASS. From the analysis of the structure, the coupled-fed antenna mainly consists of three parts: the feeding strip, shorted strip, and U-shaped parasitic coupling strip. The proposed antenna works in three resonant modes, respectively, at 860 MHz (0.25λ), 1620 MHz (0.5λ), and 2620 MHz (1λ). A solution is provided, by which the navigation antenna can be integrated into the communication main antenna to save space. The antenna not only can work in GSM850/900/1800/1900/UMTS2100/LTE2300/2500 bands but also covers the world’s four major navigation systems. Moreover, the proposed antenna can be easily printed on the circuit board without loading any lumped element and only occupies a small volume of 18 × 32 × 3 mm3, which is suitable for smartphone application. In addition, the redundant design of multinavigation system is quite favorable for the elimination of errors or shadow area caused by single navigation system, especially for outdoor investigation, national security, and so on.


2021 ◽  
Vol 13 (5) ◽  
pp. 999
Author(s):  
Yung-Fu Tsai ◽  
Wen-Hao Yeh ◽  
Jyh-Ching Juang ◽  
Dian-Syuan Yang ◽  
Chen-Tsung Lin

The global positioning system (GPS) receiver has been one of the most important navigation systems for more than two decades. Although the GPS system was originally designed for near-Earth navigation, currently it is widely used in highly dynamic environments (such as low Earth orbit (LEO)). A space-capable GPS receiver (GPSR) is capable of providing timing and navigation information for spacecraft to determine the orbit and synchronize the onboard timing; therefore, it is one of the essential components of modern spacecraft. However, a space-grade GPSR is technology-sensitive and under export control. In order to overcome export control, the National Space Organization (NSPO) in Taiwan completed the development of a self-reliant space-grade GPSR in 2014. The NSPO GPSR, built in-house, has passed its qualification tests and is ready to fly onboard the Triton satellite. In addition to providing navigation, the GPS/global navigation satellite system (GNSS) is facilitated to many remote sensing missions, such as GNSS radio occultation (GNSS-RO) and GNSS reflectometry (GNSS-R). Based on the design of the NSPO GPSR, the NSPO is actively engaged in the development of the Triton program (a GNSS reflectometry mission). In a GNSS-R mission, the reflected signals are processed to form delay Doppler maps (DDMs) so that various properties (including ocean surface roughness, vegetation, soil moisture, and so on) can be retrieved. This paper describes not only the development of the NSPO GPSR but also the design, development, and special features of the Triton’s GNSS-R mission. Moreover, in order to verify the NSPO GNSS-R receiver, ground/flight tests are deemed essential. Then, data analyses of the airborne GNSS-R tests are presented in this paper.


2021 ◽  
Vol 13 (11) ◽  
pp. 2032
Author(s):  
Junchan Lee ◽  
Sunil Bisnath ◽  
Regina S.K. Lee ◽  
Narin Gavili Kilane

This paper describes a computation method for obtaining dielectric constant using Global Navigation Satellite System reflectometry (GNSS-R) products. Dielectric constant is a crucial component in the soil moisture retrieval process using reflected GNSS signals. The reflectivity for circular polarized signals is combined with the dielectric constant equation that is used for radiometer observations. Data from the Cyclone Global Navigation Satellite System (CYGNSS) mission, an eight-nanosatellite constellation for GNSS-R, are used for computing dielectric constant. Data from the Soil Moisture Active Passive (SMAP) mission are used to measure the soil moisture through its radiometer, and they are considered as a reference to confirm the accuracy of the new dielectric constant calculation method. The analyzed locations have been chosen that correspond to sites used for the calibration and validation of the SMAP soil moisture product using in-situ measurement data. The retrieved results, especially in the case of a specular point around Yanco, Australia, show that the estimated results track closely to the soil moisture results, and the Root Mean Square Error (RMSE) in the estimated dielectric constant is approximately 5.73. Similar results can be obtained when the specular point is located near the Texas Soil Moisture Network (TxSON), USA. These results indicate that the analysis procedure is well-defined, and it lays the foundation for obtaining quantitative soil moisture content using the GNSS reflectometry results. Future work will include applying the computation product to determine the characteristics that will allow for the separation of coherent and incoherent signals in delay Doppler maps, as well as to develop local soil moisture models.


2018 ◽  
Vol 10 (8) ◽  
pp. 1245 ◽  
Author(s):  
Mehrez Zribi ◽  
Erwan Motte ◽  
Nicolas Baghdadi ◽  
Frédéric Baup ◽  
Sylvia Dayau ◽  
...  

The aim of this study is to analyze the sensitivity of airborne Global Navigation Satellite System Reflectometry (GNSS-R) on soil surface and vegetation cover characteristics in agricultural areas. Airborne polarimetric GNSS-R data were acquired in the context of the GLORI’2015 campaign over two study sites in Southwest France in June and July of 2015. Ground measurements of soil surface parameters (moisture content) and vegetation characteristics (leaf area index (LAI), and vegetation height) were recorded for different types of crops (corn, sunflower, wheat, soybean, vegetable) simultaneously with the airborne GNSS-R measurements. Three GNSS-R observables (apparent reflectivity, the reflected signal-to-noise-ratio (SNR), and the polarimetric ratio (PR)) were found to be well correlated with soil moisture and a major vegetation characteristic (LAI). A tau-omega model was used to explain the dependence of the GNSS-R reflectivity on both the soil moisture and vegetation parameters.


Sign in / Sign up

Export Citation Format

Share Document