scholarly journals Investigation of the electron-wave interaction process in the two-gap photonic crystal cavities of a low-voltage two barrel x-band multi-beam klystron.

2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
V.A. Tsarev ◽  
◽  
A.V. Livchina ◽  

This paper presents the results of comparing data from three-dimensional electromagnetic modeling of two designs of double-gap photonic crystal resonators of a two-barrel multi-beam klystron operating in the X-band at an accelerating voltage of 3.6 kV. These resonators are designed to operate on the main π-type oscillation with an output power level of about 2 kW. They are characterized by different profiles of the beam-let tubes. Each of the beam-let tubes in these structures contains 19 beam channels arranged in linear rows. The results of optimization of the complex of electronic and electro-dynamic parameters are presented. The optimal parameters and designs of resonant systems are found, which make it possible to significantly reduce the degree of inhomogeneity of the effective characteristic resistance in the interaction space.

Author(s):  
V. A. Tsarev ◽  
A. Yu. Miroshnichenko ◽  
A. V. Gnusarev ◽  
N. A. Akafyeva

Introduction. The development of new amplifiers and generators of the Ku- and K-bands (12…27 GHz) for use in onboard equipment is increasingly attracting research interest. Low-voltage multi-beam klystrons (LMBK) can be a promising element base for such devices. Serious problems are associated with the need to suppress parasitic modes of oscillations in NMLK operating in the centimeter and millimeter range. A possible solution is to use double-gap photonic-crystal resonators (DPCR) in LMBK. Another promising direction for improving the characteristics of such resonators is to use resonant segments of strip lines with fractal elements. In this case, the strip lines are placed on a dielectric substrate in the interaction space. Such resonators exhibit new properties that are useful for klystrons (an increase in characteristic impedance, suppression of the spectrum of unwanted frequencies, a reduction in mass and dimensions).Aim. Determination of an optimal set of electrodynamic and electronic parameters of double-gap photonic-crystal resonance systems with fractal elements "Minkowski Island" when operated as part of the LMBK resonator system, excited on π- and 2π-modes of oscillation.Materials and methods. To calculate the electrodynamic parameters of resonators, the method of finite differences in the time domain was used. The well-known Wessel-Berg method was used to calculate electronic parameters, such as the Ge / G0 electronic conductivity and the coupling coefficient M.Results. The main electrodynamic parameters of the resonator – Q-factor, resonant frequency and characteristic impedance – were investigated. The electronic parameters of the resonator, the coefficient of coupling with the electron beam, and the relative electronic conductivity for π- and 2π-modes of oscillations were calculated. In this case, three variants of the resonator with zero, first and second iterations of the fractal element were investigated. The amplitude-frequency characteristics of the resonator were investigated with a change in the pitch of the photonic crystal lattice. An estimation of the inhomogeneity of the high-frequency field in the interaction spaces of the resonator was carried out. Operational conditions were determined simultaneously for two types of oscillations without self-excitation.Conclusion. The results can find application in the development of resonator systems for klystron-type devices in the centimeter and millimeter ranges.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
I. S. Amiri ◽  
Ahmed Nabih Zaki Rashed ◽  
P. Yupapin

AbstractThis paper has simulated the pump laser automatic signal control for erbium-doped fiber amplifier gain, noise figure, and output spectral power. Signal gain and noise figure are deeply studied in relation to laser pump power variations at operating pumping wavelengths of 980 nm and 1,480 nm for previous and proposed models. Similar to the study of the light signal to noise ratio, output power level and maximum Q factor are also simulated versus EDFA amplifier length at pumping power of 500 mW and different pumping wavelength by using the proposed model. The obtained results are better by using a pumping wavelength of 1,480 nm than a pumping wavelength of 980 nm. The optimum EDFA amplifier is 5 m, which gives better performance than other amplifier lengths.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1314
Author(s):  
Cunxiang Yang ◽  
Yiwei Ding ◽  
Hongbo Qiu ◽  
Bin Xiong

The turn-to-turn faults (TTF) are also inevitable in split-winding transformers. The distorted leakage field generated by the TTF current results in large axial forces and end thrusts in the fault windings as well as affecting other branch windings normal operation, so it is of significance to study TTF of split-winding transformers. In this paper, the characteristics analysis of the split-winding transformer under the TTFs of the low voltage winding at different positions are presented. A 3600 KVA four split-windings transformer is taken as an example. Then, a simplified three-dimensional simplified model is established, taking into account the forces of the per-turn coil. The nonlinear-transient field-circuit coupled finite element method is used for the model. The leakage field distribution under the TTFs of the low voltage winding at different positions is studied. The resultant force of the short-circuit winding and the force of the per-turn coil are obtained. Subsequently, the force and current relationship between the branch windings are analyzed. The results show that the TTF at the specific location has a great influence on the axial windings on the same core, and the distorted leakage magnetic field will cause excessive axial force and end thrust of the normal and short-circuit windings. These results can provide a basis for the short-circuit design of split-winding transformer.


2006 ◽  
Vol 532-533 ◽  
pp. 568-571
Author(s):  
Ming Zhou ◽  
Hai Feng Yang ◽  
Li Peng Liu ◽  
Lan Cai

The photo-polymerization induced by Two-Photon Absorption (TPA) is tightly confined in the focus because the efficiency of TPA is proportional to the square of intensity. Three-dimensional (3D) micro-fabrication can be achieved by controlling the movement of the focus. Based on this theory, a system for 3D-micro-fabrication with femtosecond laser is proposed. The system consists of a laser system, a microscope system, a real-time detection system and a 3D-movement system, etc. The precision of micro-machining reaches a level down to 700nm linewidth. The line width was inversely proportional to the fabrication speed, but proportional to laser power and NA. The experiment results were simulated, beam waist of 0.413μm and TPA cross section of 2×10-54cm4s was obtained. While we tried to optimize parameters, we also did some research about its applications. With TPA photo-polymerization by means of our experimental system, 3D photonic crystal of wood-pile structure twelve layers and photonic crystal fiber are manufactured. These results proved that the micro-fabrication system of TPA can not only obtain the resolution down to sub-micron level, but also realize real 3D micro-fabrication.


2009 ◽  
Vol 15 (S2) ◽  
pp. 642-643
Author(s):  
M Bolorizadeh ◽  
HF Hess

Extended abstract of a paper presented at Microscopy and Microanalysis 2009 in Richmond, Virginia, USA, July 26 – July 30, 2009


2000 ◽  
Vol 62 (4) ◽  
pp. R2243-R2246 ◽  
Author(s):  
Shawn-Yu Lin ◽  
J. G. Fleming ◽  
E. Chow ◽  
Jim Bur ◽  
K. K. Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document