scholarly journals ArcGIS-mapping to sustainable wastewater management in Greece: siting artificial wetlands systems in a biosystem

2021 ◽  

<p>In this work, the ArcGIS technology combines analogue and digital geospatial data to derive multiple resolution meshes with a triangulated irregular networks (TINs) approach that serves to integrate the geospatial data such as surface topography, hydro graphic features and land surface characteristics into an adaptive representation of a basin biosystem. The ArcGIS model that has been developed is applied at the municipal level to a small remote settlement with less than 2000 people in Northern Greece. The aim was a site assessment for constructing an artificial wetland (ATW) system as a viable solution to the wastewater management problem and protection of biosystems. This study demonstrates that there are discrepancies in Greece between the existing open geospatial data and on the basis of the results from our study we can conclude that this combination of local maps and geographic information in ArcGIS with a TIN approach increases our knowledge of the physical terrain. It accordingly facilitates the analysis and implementation of action plans by selecting suitable sites for construction of ATW systems in small remote settlements. We moreover discuss problems regarding spatial data quality and scale and provide suggestions for improvement while the desktop classification steps can be easily reproduced for other data-similar countries.</p>

Land ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 20
Author(s):  
Yixu Wang ◽  
Mingxue Xu ◽  
Jun Li ◽  
Nan Jiang ◽  
Dongchuan Wang ◽  
...  

Although research relating to the urban heat island (UHI) phenomenon has been significantly increasing in recent years, there is still a lack of a continuous and clear recognition of the potential gradient effect on the UHI—landscape relationship within large urbanized regions. In this study, we chose the Beijing-Tianjin-Hebei (BTH) region, which is a large scaled urban agglomeration in China, as the case study area. We examined the causal relationship between the LST variation and underlying surface characteristics using multi-temporal land cover and summer average land surface temperature (LST) data as the analyzed variables. This study then further discussed the modeling performance when quantifying their relationship from a spatial gradient perspective (the grid size ranged from 6 to 24 km), by comparing the ordinary least squares (OLS) and geographically weighted regression (GWR) methods. The results indicate that: (1) both the OLS and GWR analysis confirmed that the composition of built-up land contributes as an essential factor that is responsible for the UHI phenomenon in a large urban agglomeration region; (2) for the OLS, the modeled relationship between the LST and its drive factor showed a significant spatial gradient effect, changing with different spatial analysis grids; and, (3) in contrast, using the GWR model revealed a considerably robust and better performance for accommodating the spatial non-stationarity with a lower scale dependence than that of the OLS model. This study highlights the significant spatial heterogeneity that is related to the UHI effect in large-extent urban agglomeration areas, and it suggests that the potential gradient effect and uncertainty induced by different spatial scale and methodology usage should be considered when modeling the UHI effect with urbanization. This would supplement current UHI study and be beneficial for deepening the cognition and enlightenment of landscape planning for UHI regulation.


2010 ◽  
Vol 11 (1) ◽  
pp. 122-138 ◽  
Author(s):  
Guoxiang Yang ◽  
Laura C. Bowling ◽  
Keith A. Cherkauer ◽  
Bryan C. Pijanowski ◽  
Dev Niyogi

Abstract Impervious surface area (ISA) has different surface characteristics from the natural land cover and has great influence on watershed hydrology. To assess the urbanization effects on streamflow regimes, the authors analyzed the U.S. Geological Survey (USGS) streamflow data of 16 small watersheds in the White River [Indiana (IN)] basin. Correlation between hydrologic metrics (flow distribution, daily variation in streamflow, and frequency of high-flow events) and ISA was investigated by employing the nonparametric Mann–Kendall method. Results derived from the 16 watersheds show that urban intensity has a significant effect on all three hydrologic metrics. The Variable Infiltration Capacity (VIC) model was modified to represent ISA in urbanized basins using a bulk parameterization approach. The model was then applied to the White River basin to investigate the potential ability to simulate the water and energy cycle response to urbanization. Correlation analysis for individual VIC grid cells indicates that the VIC urban model was able to reproduce the slope magnitude and mean value of the USGS streamflow metrics. The urban model also reproduced the urban heat island (UHI) seen in the Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature products, especially for the grids encompassing the city of Indianapolis, IN. The difference of the hydrologic metrics obtained from the VIC model with and without urban representation indicates that the streamflow regime in the White River has been modified because of urban development. The observed data, together with model analysis, suggested that 3%–5% ISA in a watershed is the detectable threshold, beyond which urbanization effects start to have a statistically significant influence on streamflow regime.


2007 ◽  
Vol 8 (3) ◽  
pp. 439-446 ◽  
Author(s):  
Dagang Wang ◽  
Guiling Wang

Abstract Representation of the canopy hydrological processes has been challenging in land surface modeling due to the subgrid heterogeneity in both precipitation and surface characteristics. The Shuttleworth dynamic–statistical method is widely used to represent the impact of the precipitation subgrid variability on canopy hydrological processes but shows unwanted sensitivity to temporal resolution when implemented into land surface models. This paper presents a canopy hydrology scheme that is robust at different temporal resolutions. This scheme is devised by applying two physically based treatments to the Shuttleworth scheme: 1) the canopy hydrological processes within the rain-covered area are treated separately from those within the nonrain area, and the scheme tracks the relative rain location between adjacent time steps; and 2) within the rain-covered area, the canopy interception is so determined as to sustain the potential evaporation from the wetted canopy or is equal to precipitation, whichever is less, to maintain somewhat wet canopy during any rainy time step. When applied to the Amazon region, the new scheme establishes interception loss ratios of 0.3 at a 10-min time step and 0.23 at a 2-h time step. Compared to interception loss ratios of 0.45 and 0.09 at the corresponding time steps established by the original Shuttleworth scheme, the new scheme is much more stable under different temporal resolutions.


2017 ◽  
Vol 21 (1) ◽  
pp. 409-422 ◽  
Author(s):  
Jason P. Evans ◽  
Xianhong Meng ◽  
Matthew F. McCabe

Abstract. In this study, we have examined the ability of a regional climate model (RCM) to simulate the extended drought that occurred throughout the period of 2002 through 2007 in south-east Australia. In particular, the ability to reproduce the two drought peaks in 2002 and 2006 was investigated. Overall, the RCM was found to reproduce both the temporal and the spatial structure of the drought-related precipitation anomalies quite well, despite using climatological seasonal surface characteristics such as vegetation fraction and albedo. This result concurs with previous studies that found that about two-thirds of the precipitation decline can be attributed to the El Niño–Southern Oscillation (ENSO). Simulation experiments that allowed the vegetation fraction and albedo to vary as observed illustrated that the intensity of the drought was underestimated by about 10 % when using climatological surface characteristics. These results suggest that in terms of drought development, capturing the feedbacks related to vegetation and albedo changes may be as important as capturing the soil moisture–precipitation feedback. In order to improve our modelling of multi-year droughts, the challenge is to capture all these related surface changes simultaneously, and provide a comprehensive description of land surface–precipitation feedback during the droughts development.


2016 ◽  
Vol 23 (1) ◽  
pp. 3-11 ◽  
Author(s):  
Andrzej Chybicki ◽  
Marcin Kulawiak ◽  
Zbigniew Łubniewski

Abstract Estimation of surface temperature using multispectral imagery retrieved from satellite sensors constitutes several problems in terms of accuracy, accessibility, quality and evaluation. In order to obtain accurate results, currently utilized methods rely on removing atmospheric fluctuations in separate spectral windows, applying atmospheric corrections or utilizing additional information related to atmosphere or surface characteristics like atmospheric water vapour content, surface effective emissivity correction or transmittance correction. Obtaining accurate results of estimation is particularly critical for regions with fairly non-uniform distribution of surface effective emissivity and surface characteristics such as coastal zone areas. The paper presents the relationship between retrieved land surface temperature, air temperature, sea surface temperature and vegetation indices (VI) calculated based on remote observations in the coastal zone area. An indirect comparison method between remotely estimated surface temperature and air temperature using LST/VI feature space characteristics in an operational Geographic Information System is also presented.


2014 ◽  
Vol 71 (4) ◽  
Author(s):  
Azman Ariffin ◽  
Nabila Ibrahim ◽  
Ghazali Desa ◽  
Uznir Ujang ◽  
Hishamuddin Mohd Ali ◽  
...  

This paper addresses the need to develop a Local Geospatial Data Infrastructure (LGDI) for sustainable urban development. This research will highlight the effective and efficient framework for the development of local infrastructure. This paper presents a framework (a combination of domain based and goal based frameworks) for developing a Local Geospatial Data Infrastructure. The basis of this research is on a case study conducted in a Malaysian city. The main focus of the case study was on measuring and assessing sustainability. Six conceptual frameworks were produced based on 6 key dimensions of sustainability. The developed framework consists of 6 conceptual data models and 6 conceptual data structures. It was concluded that 30 spatial data layers are needed of which 12 data layers are categorized as point shape, 17 data layers are categorized as polygon shape and 1 data layer as line shape category.


2013 ◽  
Vol 10 (11) ◽  
pp. 7575-7597 ◽  
Author(s):  
K. A. Luus ◽  
Y. Gel ◽  
J. C. Lin ◽  
R. E. J. Kelly ◽  
C. R. Duguay

Abstract. Arctic field studies have indicated that the air temperature, soil moisture and vegetation at a site influence the quantity of snow accumulated, and that snow accumulation can alter growing-season soil moisture and vegetation. Climate change is predicted to bring about warmer air temperatures, greater snow accumulation and northward movements of the shrub and tree lines. Understanding the responses of northern environments to changes in snow and growing-season land surface characteristics requires: (1) insights into the present-day linkages between snow and growing-season land surface characteristics; and (2) the ability to continue to monitor these associations over time across the vast pan-Arctic. The objective of this study was therefore to examine the pan-Arctic (north of 60° N) linkages between two temporally distinct data products created from AMSR-E satellite passive microwave observations: GlobSnow snow water equivalent (SWE), and NTSG growing-season AMSR-E Land Parameters (air temperature, soil moisture and vegetation transmissivity). Due to the complex and interconnected nature of processes determining snow and growing-season land surface characteristics, these associations were analyzed using the modern nonparametric technique of alternating conditional expectations (ACE), as this approach does not impose a predefined analytic form. Findings indicate that regions with lower vegetation transmissivity (more biomass) at the start and end of the growing season tend to accumulate less snow at the start and end of the snow season, possibly due to interception and sublimation. Warmer air temperatures at the start and end of the growing season were associated with diminished snow accumulation at the start and end of the snow season. High latitude sites with warmer mean annual growing-season temperatures tended to accumulate more snow, probably due to the greater availability of water vapor for snow season precipitation at warmer locations. Regions with drier soils preceding snow onset tended to accumulate greater quantities of snow, likely because drier soils freeze faster and more thoroughly than wetter soils. Understanding and continuing to monitor these linkages at the regional scale using the ACE approach can allow insights to be gained into the complex response of Arctic ecosystems to climate-driven shifts in air temperature, vegetation, soil moisture and snow accumulation.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 138
Author(s):  
Yu Wang ◽  
Corene J. Matyas

This study examined whether varying moisture availability and roughness length for the land surface under a simulated Tropical Cyclone (TC) could affect its production of precipitation. The TC moved over the heterogeneous land surface of the southeastern U.S. in the control simulation, while the other simulations featured homogeneous land surfaces that were wet rough, wet smooth, dry rough, and dry smooth. Results suggest that the near-surface atmosphere was modified by the changes to the land surface, where the wet cases have higher latent and lower sensible heat flux values, and rough cases exhibit higher values of friction velocity. The analysis of areal-averaged rain rates and the area receiving low and high rain rates shows that simulations having a moist land surface produce higher rain rates and larger areas of low rain rates in the TC’s inner core. The dry and rough land surfaces produced a higher coverage of high rain rates in the outer regions. Key differences among the simulations happened as the TC core moved over land, while the outer rainbands produced more rain when moving over the coastline. These findings support the assertion that the modifications of the land surface can influence precipitation production within a landfalling TC.


Author(s):  
A. K. Tripathi ◽  
S. Agrawal ◽  
R. D. Gupta

Abstract. Sharing and management of geospatial data among different communities and users is a challenge which is suitably addressed by Spatial Data Infrastructure (SDI). SDI helps people in the discovery, editing, processing and visualization of spatial data. The user can download the data from SDI and process it using the local resources. However, large volume and heterogeneity of data make this processing difficult at the client end. This problem can be resolved by orchestrating the Web Processing Service (WPS) with SDI. WPS is a service interface through which geoprocessing can be done over the internet. In this paper, a WPS enabled SDI framework with OGC compliant services is conceptualized and developed. It is based on the three tier client server architecture. OGC services are provided through GeoServer. WPS extension of GeoServer is used to perform geospatial data processing and analysis. The developed framework is utilized to create a public health SDI prototype using Open Source Software (OSS). The integration of WPS with SDI demonstrates how the various data analysis operations of WPS can be performed over the web on distributed data sources provided by SDI.


Sign in / Sign up

Export Citation Format

Share Document