scholarly journals Adsorptive Capacity of Malachite Green onto Mg/M3+ (M3+=Al and Cr) LDHs

2021 ◽  

<p>Layered double hydroxides (LDHs) of MgM3+ (M3+=Al and Cr) were synthesized by coprecipitation method to form Mg/Al and Mg/Cr LDHs. The materials were applied as adsorbents of malachite green in aqueous solution. The physical properties of Mg/Al and Mg/Cr were analyzed using XRD, FTIR, BET and TGDTA characterizations. The XRD pattern shows the characteristic of LDHs which has diffraction at 11.470 (003) and at 34.690 (012) for Mg/Al and 12.450 (003) and at 380 (012) for Mg/Cr. The interlayer spaces of Mg/Al and Mg/Cr LDHs were 7.71 Å and 7.62 Å, respectively. The surface area of Mg/Al was higher than Mg/Cr. The FTIR spectra confirm that the intense peak at 1385 cm-1 denotes vibration of nitrate bond and M-O band in under 1000 cm-1. Thus the Mg/Al and Mg/Cr LDHs were applied as adsorbents to remove malachite green in aqueous solution. The results of malachite green adsorption showed that malachite green was adsorbed onto Mg/Al and Mg/Cr followed pseudo second order and Langmuir adsorption parameter. The adsorption capacity of malachite green for Mg/Al and Mg/Cr was 44.444 mg/g and 33.784 mg/g, respectively. The thermodynamic study showed that the adsorption process was spontaneous, endothermic and favored in high temperature. The regeneration process showed that Mg/Al and Mg/Cr LDHs has high stability structure toward reusability of adsorbent until three cycles adsorption process.</p>

2021 ◽  
Vol 6 (3) ◽  
pp. 209-217
Author(s):  
Neza Rahayu Palapa ◽  
Tarmizi Taher ◽  
Alfan Wijaya ◽  
Aldes Lesbani

Modification of Cu/Cr layered double hydroxides (LDHs) has been conducted by intercalation using Keggin type polyoxometalate [a-SiW12O40]4- to form CuCr-[a-SiW12O40]. The materials were analyzed by XRD, FTIR, and surface area analyses. Furthermore, materials were used as selectivity adsorbents of cationic dyes such as malachite green, rhodamine-B and methylene blue. The malachite green is more selective than others from an aqueous solution. The adsorption of malachite green showed that the adsorption capacity of CuCr-[a-SiW12O40] was higher than pristine LDHs. The adsorption process was followed pseudo second order kinetic model and Langmuir isotherm adsorption. The Qmax value of CuCr-[a-SiW12O40] reached 55.322 mg/g at 323 K after 100 minutes adsorption time. Thermodynamic parameters such as ΔG, ΔH and ΔS confirm that the adsorption process was endothermic, spontaneous, and more favorable at high temperatures. The intercalated material was higher structural stability toward reusability adsorbent than pristine LDHs.


Author(s):  
Bruna Assis Paim dos Santos ◽  
Aline Silva Cossolin ◽  
Hélen Cristina Oliveira dos Reis ◽  
Ketinny Camargo de Castro ◽  
Evanleide Rodrigues da Silva ◽  
...  

In this study, baker’s yeast-MnO2 composites, produced by direct oxidation of yeast with KMnO4 under acidic conditions, were used as biosorbent to remove the triphenylmethane dye Malachite green (MG) from an aqueous solution. Parameters that influence the adsorption process, such as pH, contact time, temperature, initial dye concentration and biosorbent dosage, were evaluated in batch experiments. The optimum removal of MG was found to be  86.7 mg g-1 at pH 10, 1.0 g L-1 of biomass dosage and 45°C. The kinetic data of dye removal was better described by the pseudo-second-order model. The adsorption process followed the Langmuir isotherm model and the maximum biosorption capacity was estimated to be  243.9 mg g-1 (at 25°C). The negative values of ∆G° and the positive value of ∆H° indicated that the MG biosorption onto yeast-MnO2 composites is spontaneous and endothermic. Fourier transform infrared spectroscopy (FTIR) indicated that the nano-MnO2 particles deposited on yeast-MnO2 composites surface facilitated the MG adsorption. It was concluded that baker’s yeast-MnO2 composites have potential for application as adsorbent for removal of MG from aqueous solution.


2020 ◽  
Vol 5 (2) ◽  
pp. 59
Author(s):  
Nurlisa Hidayati ◽  
Risfidian Mohadi ◽  
Elfita Elfita ◽  
Aldes Lesbani

Zn/Al-citrate LDHs was synthesized using co precipitation method at basic condition and the material were applied as adsorbent of malachite green (MG) dye in aqueous medium using batch system. Adsorption of MG onto Zn/Al-citrate was investigated through kinetic, isotherm adsorption and thermodynamic studies. Kinetic model was fitted PSO than PFO for MG adsorption. The rate of adsorption 𝑘2 for Zn/Al LDHs was 0.000692 g.mg−1 min−1 and 0.000371 g for Zn/Al-citrate LDHs.mg−1 min−1. Adsorption of malachite green onto Zn/Al LDHs and Zn/Al citrate LDHs was investigated and following Langmuir adsorption isotherm model shows chemical adsorption process. The adsorption capacity maximum of Zn/Al-citrate is 333 mg/g from Zn/Al LDHs is only 111 mg/g. Thermodynamic parameters of Zn/Al-citrate confirmed adsorption process was endothermic and spontaneous.


2017 ◽  
Vol 75 (6) ◽  
pp. 1466-1473 ◽  
Author(s):  
Shifeng Li ◽  
Fang Qi ◽  
Min Xiao ◽  
Hongtao Fan ◽  
Yanming Shen ◽  
...  

Mg-Al layered double hydroxides (LDHs) adsorbent was synthesized in situ on γ-Al2O3 for the removal of Cr(VI) from aqueous solution. The material was characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy, Raman spectroscopy, scanning electronic microscopy and thermogravimetry and differential thermal analysis. Compared to the LDHs powder, the calcined LDHs sorbent prepared in situ on γ-Al2O3 had higher specific surface area and was easy to recover and reuse. The adsorptive capacity for removing Cr(VI) from aqueous solution was resulting from the memory effect of LDHs based on the XRD results. Both the pseudo-second-order kinetic model and the Langmuir model fit the experimental data well. Furthermore, the adsorbent exhibits excellent sorption–regeneration performances.


2020 ◽  
Vol 81 (12) ◽  
pp. 2522-2532
Author(s):  
Zhongliang Shi ◽  
Yanmei Wang ◽  
Shuyu Sun ◽  
Cheng Zhang ◽  
Haibo Wang

Abstract Layered double hydroxides (LDH) with highly flexible and adjustable chemical composition and physical properties have attracted tremendous attention in recent years. A series of LDH with different M (Mg, Zn, Mn)-Fe molar ratios were synthesized by the double titration co-precipitation method. The effect of the factors, including M (Mg, Zn, Mn) : Fe molar ratio, pH, and M-Fe LDH dosage, on the ability of the prepared M-Fe LDH to remove cationic methylene blue (MB) dye from aqueous solution were investigated. Results indicated that the removal efficiency of MB (10 mg/L) was the best at the M (Mg, Zn, Mn): Fe molar ratio of 3:1 by using 2.0 g/L of M-Fe LDH at pH 6.0 under 298.15 K. Mg-Fe LDH had the highest removal performance (71.94 mg/g at 298.15 K) for MB compared to those of the Zn-Fe and Mn-Fe LDH. Zn-Fe LDH with the smallest activation energy resulted in the fastest adsorption rate of MB. The pseudo-second-order model and Langmuir adsorption isotherm were also successfully applied to fit the theory of M-Fe LDH for removal of MB.


BioResources ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 598-615
Author(s):  
Yande Jing ◽  
Yongqiang Cao ◽  
Qianqian Yang ◽  
Xuan Wang

A novel bentonite-biochar (APB) composite was prepared by incorporating bentonite (BE) with Alternanthera philoxeroides (AP) biochar for the adsorptive removal of Cd(II) from aqueous media. The APB and the pristine biochar (PB) prepared from the AP were produced at 300 °C under a nitrogen environment. The adsorption capabilities of the BE, PB, and APB were tested for the removal of Cd(II) from aqueous solution. The results showed that the pH substantially affected the adsorption of Cd(II) by the PB and APB. The adsorptive capacity of the Cd(II) onto the PB and APB gradually increased as the pH was increased to 6.0, and there was no significant change in adsorption as the pH was further increased to 8.0. The adsorption kinetic data of the PB and APB were fitted to a pseudo-second-order (PSO) adsorption kinetic model and an intraparticle diffusion (ID) model. The Freundlich model matched the experimental data better than the Langmuir model, indicating that the adsorption was heterogeneous. Thermodynamic study revealed that the adsorption was mainly physisorption, and the adsorption process was endothermic and spontaneous, while the orderliness of all adsorption systems decreased. The results demonstrated that the APB was an effective adsorbent for the removal of Cd(II) from aqueous media.


2012 ◽  
Vol 9 (3) ◽  
pp. 1457-1480 ◽  
Author(s):  
R. Bhaumik ◽  
N. K. Mondal ◽  
B. Das ◽  
P. Roy ◽  
K. C. Pal ◽  
...  

A new medium, eggshell powder has been developed for fluoride removal from aqueous solution. Fluoride adsorption was studied in a batch system where adsorption was found to be pH dependent with maximum removal efficiency at 6.0. The experimental data was more satisfactorily fitted with Langmuir isotherm model. The kinetics and the factor controlling adsorption process fully accepted by pseudo-second-order model were also discussed. Eawas found to be 45.98 kJmol-1by using Arrhenius equation, indicating chemisorption nature of fluoride onto eggshell powder. Thermodynamic study showed spontaneous nature and feasibility of the adsorption process with negative enthalpy (∆H0) value also supported the exothermic nature. Batch experiments were performed to study the applicability of the adsorbent by using fluoride contaminated water collected from affected areas. These results indicate that eggshell powder can be used as an effective, low-cost adsorbent to remove fluoride from aqueous solution as well as groundwater.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2133 ◽  
Author(s):  
Xuli Li ◽  
Yue Zeng ◽  
Fangyuan Chen ◽  
Teng Wang ◽  
Yixin Li ◽  
...  

Zeolite analcime (EMANA) was synthesized through the hydrothermal method by using carbothermal reduction electrolytic manganese residue (CR-EMR). The structural properties of EMANA and CR-EMR were studied using various characterization techniques. After hydrothermal synthesis, the CR-EMR became super-microporous, and the surface area increased by 4.76 times than before. Among the various synthesized zeolites, 6 h-synthesized EMANA was selected as the best adsorbent for macrolide antibiotics in aqueous solution. The adsorption performance of EMANA on the adsorption capacity was examined by using various experimental parameters, such as contact time (0–24 h), initial concentration (50–300 mg/L), temperature (30–50 °C) and pH (3–13). The experimental results were also analyzed by the Langmuir and Freundlich adsorption models, with the latter obtaining better representation. The adsorption process could be described well by the pseudo-second-order model, even under a low concentration (50 mg/L). This result suggests that the adsorption process of macrolide antibiotics is due to chemisorption. According to the Fourier Transform infrared spectroscopy (FT-IR) results, the adsorption of zeolite was mainly due to its hydroxyl group, which played an important role during the adsorption process. Moreover, EMANA is more suitable for treatment of roxithromycin (ROX) than azithromycin (AZM), because ROX has more adsorption sites for the hydroxyl group.


2020 ◽  
Vol 9 (2) ◽  
pp. 108-116
Author(s):  
Tarmizi Taher ◽  
◽  
Nyanyu Ummu Hani ◽  
Neza Rahayu Palapa ◽  
Risfidian Mohadi ◽  
...  

In this work, two synthetic layered double hydroxides (LDH) consists of Zn2+ as M2+ cation with different M3+ cation, i.e., Al3+ and Cr3+ were used as an adsorbent for Congo Red removal aqueous solution. Both Zn-Al and Zn-Cr LDH were characterized by X-ray diffraction, FT-IR, and BET surface area analyzer. The effect of contact time, initial dye concentration, and temperature were evaluated in a batch technique in order to investigate the characteristic of Congo Red adsorption onto both adsorbents. The experimental data were assessed according to the parameter of adsorption kinetics, isotherm, and thermodynamics. The results of LDH characterization showed that Zn-Al LDH has a higher interlayer distance than Zn-Cr LDH, although Zn-Cr LDH has a higher surface area. The FT-IR analysis indicated the interlayer space of both Zn-Cr and Zn-Al LDH was dominated by CO32- as the interlayer anion species. The adsorption kinetics study of Congo Red on both LDH revealed that the adsorption process followed the pseudo-second-order model. For the adsorption isotherm, the experimental data fit well with the Freundlich model rather than the Langmuir model. The thermodynamic study indicated that the adsorption process that occurred on both adsorbents was spontaneous with exothermic nature.


2020 ◽  
Vol 38 (9-10) ◽  
pp. 483-501
Author(s):  
Nguyen Thi Huong ◽  
Nguyen Ngoc Son ◽  
Vo Hoang Phuong ◽  
Cong Tien Dung ◽  
Pham Thi Mai Huong ◽  
...  

The Fe3O4/Talc nanocomposite was synthesized by the coprecipitation-ultrasonication method. The reaction was carried out under a inert gas environment. The nanoparticles were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), fourier-transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry techniques (VSM), the surface area of the nanoparticles was determined to be 77.92 m2/g by Brunauer-Emmett-Teller method (BET). The kinetic data showed that the adsorption process fitted with the pseudo-second order model. Batch experiments were carried out to determine the adsorption kinetics and mechanisms of Cr(VI) by Fe3O4/Talc nanocomposite. The adsorption process was found to be highly pH-dependent, which made the material selectively adsorb these metals from aqueous solution. The isotherms of adsorption were also studied using Langmuir and Freundlich equations in linear forms. It is found that the Langmuir equation showed better linear correlation with the experimental data than the Freundlich. The thermodynamics of Cr(VI) adsorption onto the Fe3O4/Talc nanocomposite indicated that the adsorption was exothermic. The reusability study has proven that Fe3O4/Talc nanocomposite can be employed as a low-cost and easy to separate.


Sign in / Sign up

Export Citation Format

Share Document