scholarly journals Removal of Cd(II) from aqueous solution by clay-biochar composite prepared from Alternanthera philoxeroides and bentonite

BioResources ◽  
2019 ◽  
Vol 15 (1) ◽  
pp. 598-615
Author(s):  
Yande Jing ◽  
Yongqiang Cao ◽  
Qianqian Yang ◽  
Xuan Wang

A novel bentonite-biochar (APB) composite was prepared by incorporating bentonite (BE) with Alternanthera philoxeroides (AP) biochar for the adsorptive removal of Cd(II) from aqueous media. The APB and the pristine biochar (PB) prepared from the AP were produced at 300 °C under a nitrogen environment. The adsorption capabilities of the BE, PB, and APB were tested for the removal of Cd(II) from aqueous solution. The results showed that the pH substantially affected the adsorption of Cd(II) by the PB and APB. The adsorptive capacity of the Cd(II) onto the PB and APB gradually increased as the pH was increased to 6.0, and there was no significant change in adsorption as the pH was further increased to 8.0. The adsorption kinetic data of the PB and APB were fitted to a pseudo-second-order (PSO) adsorption kinetic model and an intraparticle diffusion (ID) model. The Freundlich model matched the experimental data better than the Langmuir model, indicating that the adsorption was heterogeneous. Thermodynamic study revealed that the adsorption was mainly physisorption, and the adsorption process was endothermic and spontaneous, while the orderliness of all adsorption systems decreased. The results demonstrated that the APB was an effective adsorbent for the removal of Cd(II) from aqueous media.

2021 ◽  

<p>Layered double hydroxides (LDHs) of MgM3+ (M3+=Al and Cr) were synthesized by coprecipitation method to form Mg/Al and Mg/Cr LDHs. The materials were applied as adsorbents of malachite green in aqueous solution. The physical properties of Mg/Al and Mg/Cr were analyzed using XRD, FTIR, BET and TGDTA characterizations. The XRD pattern shows the characteristic of LDHs which has diffraction at 11.470 (003) and at 34.690 (012) for Mg/Al and 12.450 (003) and at 380 (012) for Mg/Cr. The interlayer spaces of Mg/Al and Mg/Cr LDHs were 7.71 Å and 7.62 Å, respectively. The surface area of Mg/Al was higher than Mg/Cr. The FTIR spectra confirm that the intense peak at 1385 cm-1 denotes vibration of nitrate bond and M-O band in under 1000 cm-1. Thus the Mg/Al and Mg/Cr LDHs were applied as adsorbents to remove malachite green in aqueous solution. The results of malachite green adsorption showed that malachite green was adsorbed onto Mg/Al and Mg/Cr followed pseudo second order and Langmuir adsorption parameter. The adsorption capacity of malachite green for Mg/Al and Mg/Cr was 44.444 mg/g and 33.784 mg/g, respectively. The thermodynamic study showed that the adsorption process was spontaneous, endothermic and favored in high temperature. The regeneration process showed that Mg/Al and Mg/Cr LDHs has high stability structure toward reusability of adsorbent until three cycles adsorption process.</p>


2013 ◽  
Vol 69 (4) ◽  
pp. 819-824 ◽  
Author(s):  
Huiyuan Li ◽  
Xin Zhong ◽  
Hui Zhang ◽  
Luojing Xiang ◽  
Sebastien Royer ◽  
...  

This work describes the removal of tetracycline (TC) from aqueous solution using a mesoporous alumina (meso-Al2O3) as adsorbent in the presence of ultrasonic irradiation. Adsorption of TC was investigated under various operating conditions, including pH, adsorbent dosage, ultrasound power, and initial TC concentration. The results showed that the rate of TC sorption was enhanced with the assistance of ultrasound. The TC removal increased with the increase in sorbent dosage, pH and ultrasound power, but decreased with the increase in initial TC concentration. The adsorption isotherm data were fitted properly with the Freundlich model under ultrasonic irradiation, and the adsorption process followed a pseudo-second-order kinetic model.


Clay Minerals ◽  
2013 ◽  
Vol 48 (4) ◽  
pp. 627-637 ◽  
Author(s):  
J. X. Zhang ◽  
Q. X. Zhou ◽  
W. Li

AbstractThe removal of enrofloxacin, a fluoroquinolone antibiotic, from aqueous solution by adsorption onto bentonite was investigated in this study. The effects of initial concentrations, contact time and temperature on the adsorption of enrofloxacin were studied via batch experiments. The adsorption equilibrium was achieved within 60 min for all studied concentrations. The adsorption capacity increased with the increase of initial concentration within a concentration range. Higher temperatures were favourable for the adsorption. The change of Gibbs free energy (ΔG°), change of enthalpy (ΔH°) and change of entropy (ΔS°) were evaluated and the results indicate that the adsorption should be an endothermic and spontaneous process. The Langmuir isotherm model fitted to the experimental data better than the Freundlich model. The adsorption follows the pseudo-second order kinetic model.


KIMIKA ◽  
2019 ◽  
Vol 30 (2) ◽  
pp. 17-26
Author(s):  
Kevinilo P. Marquez ◽  
Rufus Mart Caesar R. Ramos

The study aims to quantitatively assess the capability of lignin extracted from Saccharum spontaneum L. (talahib grass) as an adsorbent of chromium (III) and phenolphthalein in aqueous solution through kinetic methods. Results show that using lignin as an adsorbent, the percentage removal for both chromium (III) and phenolphthalein in aqueous solution are 31.70% and 74.98%, respectively, based on the optimum exposure time of the adsorbent, which is 6.5 hours for chromium (III) and 60 minutes for phenolphthalein. Results from the mechanistic analysis show that a pseudo-second order adsorption kinetic model fits better than a pseudo-first order model for both substrates. Also, among the six selected adsorption isotherm models used in this study, the Flory-Huggins isotherm can best predict the properties of the adsorption process of both phenolphthalein and chromium (III) at equilibrium. Further improvement of the extracted lignin through various physical and chemical modifications may improve its ability to remove the contaminants.


2010 ◽  
Vol 105-106 ◽  
pp. 627-630
Author(s):  
Zheng Wang ◽  
Lin Sheng Zhang ◽  
Zhao Qian Jing

Zeolite-attapulgite nano-pore structure ceramisite was prepared using natural zeolite and attapulgite through compounding, granulation and calcination.After elementary characterization of this ceramisite by mercury porosimeter, batch tests were carried out to examine its removal mechanism of ammonia. The influences of pH, contact time, initial ammonia concentration and temperature on the ammonia removal were investigated. The optimum pH for adsorption of ammonia was found to be less than 7. The adsorption process followed pseudo-second order rate model. Adsorption isotherm studies showed that Freundlich model fitted the experimental data. The sorption of ammonia increased with the rise of temperature because adsorption process was endothermic. The zeolite-attapulgite composite nano- pore structure ceramisite shows very good promise for practical applicability of ammonia removal from aqueous solution.


2012 ◽  
Vol 9 (3) ◽  
pp. 1457-1480 ◽  
Author(s):  
R. Bhaumik ◽  
N. K. Mondal ◽  
B. Das ◽  
P. Roy ◽  
K. C. Pal ◽  
...  

A new medium, eggshell powder has been developed for fluoride removal from aqueous solution. Fluoride adsorption was studied in a batch system where adsorption was found to be pH dependent with maximum removal efficiency at 6.0. The experimental data was more satisfactorily fitted with Langmuir isotherm model. The kinetics and the factor controlling adsorption process fully accepted by pseudo-second-order model were also discussed. Eawas found to be 45.98 kJmol-1by using Arrhenius equation, indicating chemisorption nature of fluoride onto eggshell powder. Thermodynamic study showed spontaneous nature and feasibility of the adsorption process with negative enthalpy (∆H0) value also supported the exothermic nature. Batch experiments were performed to study the applicability of the adsorbent by using fluoride contaminated water collected from affected areas. These results indicate that eggshell powder can be used as an effective, low-cost adsorbent to remove fluoride from aqueous solution as well as groundwater.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2133 ◽  
Author(s):  
Xuli Li ◽  
Yue Zeng ◽  
Fangyuan Chen ◽  
Teng Wang ◽  
Yixin Li ◽  
...  

Zeolite analcime (EMANA) was synthesized through the hydrothermal method by using carbothermal reduction electrolytic manganese residue (CR-EMR). The structural properties of EMANA and CR-EMR were studied using various characterization techniques. After hydrothermal synthesis, the CR-EMR became super-microporous, and the surface area increased by 4.76 times than before. Among the various synthesized zeolites, 6 h-synthesized EMANA was selected as the best adsorbent for macrolide antibiotics in aqueous solution. The adsorption performance of EMANA on the adsorption capacity was examined by using various experimental parameters, such as contact time (0–24 h), initial concentration (50–300 mg/L), temperature (30–50 °C) and pH (3–13). The experimental results were also analyzed by the Langmuir and Freundlich adsorption models, with the latter obtaining better representation. The adsorption process could be described well by the pseudo-second-order model, even under a low concentration (50 mg/L). This result suggests that the adsorption process of macrolide antibiotics is due to chemisorption. According to the Fourier Transform infrared spectroscopy (FT-IR) results, the adsorption of zeolite was mainly due to its hydroxyl group, which played an important role during the adsorption process. Moreover, EMANA is more suitable for treatment of roxithromycin (ROX) than azithromycin (AZM), because ROX has more adsorption sites for the hydroxyl group.


Membranes ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 66
Author(s):  
Gerardo León ◽  
Elisa Gómez ◽  
Beatriz Miguel ◽  
Asunción María Hidalgo ◽  
María Gómez ◽  
...  

Emulsion liquid membranes have been successfully used for the removal of different types of organic and inorganic pollutants by means of carrier-mediated transport mechanisms. However, the models that describe the kinetics and transport of such mechanisms are very complex due to the high number of model parameters. Starting from an analysis of the similarity between the elemental mechanisms of carrier-mediated transport in liquid membranes and of transport in adsorption processes, this paper presents an experimental analysis of the possibility of applying kinetic and mechanistic models developed for adsorption to carrier-mediated transport in emulsion liquid membranes. We study the removal of a target species, in this case, Cu(II), by emulsion liquid membranes containing membrane phase solutions of benzoylacetone (carrier agent), Span 80 (emulsifying agent) and kerosene (diluent), and hydrochloric acid as a stripping agent in the product phase. The experimental results fit the pseudo-second-order adsorption kinetic model, showing good relationships between the experimental and model parameters. Although both Cu(II) diffusion through the feed/membrane interface boundary layer and complex Cu-benzoylacetone diffusion through the membrane phase controls Cu(II) transport, it is the former step that mainly controls the transport process.


2020 ◽  
Vol 1 (2) ◽  
pp. 54-62
Author(s):  
Naser Al Amery ◽  
Hussein Rasool Abid ◽  
Shaobin Wang ◽  
Shaomin Liu

In this study, two improved versions of UiO-66 were successfully synthesised. Modified UiO-66 and UiO-66-Ce were characterised to confirm the integrity of the structure, the stability of functional groups on the surface and the thermal stability. Activated samples were used for removal harmful anionic dye (methyl orange) (MO) from wastewater. Batch adsorption process was relied to investigate the competition between those MOFs for removing MO from aqueous solution. Based on the results, at a higher initial concentration, the maximum MO uptake was achieved by UiO-66-Ce which was better than modified-UiO-66. They adsorbed 71.5 and 62.5 mg g-1 respectively. Langmuir and Freundlich isotherms were employed to simulate the experimental data. In addition, Pseudo first order and Pseudo second order equations were used to describe the dynamic behaviour of MO through the adsorption process. The high adsorption capacities on these adsorbents can make them promised adsorbents in industrial areas.


2020 ◽  
Vol 38 (9-10) ◽  
pp. 483-501
Author(s):  
Nguyen Thi Huong ◽  
Nguyen Ngoc Son ◽  
Vo Hoang Phuong ◽  
Cong Tien Dung ◽  
Pham Thi Mai Huong ◽  
...  

The Fe3O4/Talc nanocomposite was synthesized by the coprecipitation-ultrasonication method. The reaction was carried out under a inert gas environment. The nanoparticles were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), fourier-transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry techniques (VSM), the surface area of the nanoparticles was determined to be 77.92 m2/g by Brunauer-Emmett-Teller method (BET). The kinetic data showed that the adsorption process fitted with the pseudo-second order model. Batch experiments were carried out to determine the adsorption kinetics and mechanisms of Cr(VI) by Fe3O4/Talc nanocomposite. The adsorption process was found to be highly pH-dependent, which made the material selectively adsorb these metals from aqueous solution. The isotherms of adsorption were also studied using Langmuir and Freundlich equations in linear forms. It is found that the Langmuir equation showed better linear correlation with the experimental data than the Freundlich. The thermodynamics of Cr(VI) adsorption onto the Fe3O4/Talc nanocomposite indicated that the adsorption was exothermic. The reusability study has proven that Fe3O4/Talc nanocomposite can be employed as a low-cost and easy to separate.


Sign in / Sign up

Export Citation Format

Share Document