scholarly journals Baker’s yeast-MnO2 composites as biosorbent for Malachite green: An ecofriendly approach for dye removal from aqueous solution

Author(s):  
Bruna Assis Paim dos Santos ◽  
Aline Silva Cossolin ◽  
Hélen Cristina Oliveira dos Reis ◽  
Ketinny Camargo de Castro ◽  
Evanleide Rodrigues da Silva ◽  
...  

In this study, baker’s yeast-MnO2 composites, produced by direct oxidation of yeast with KMnO4 under acidic conditions, were used as biosorbent to remove the triphenylmethane dye Malachite green (MG) from an aqueous solution. Parameters that influence the adsorption process, such as pH, contact time, temperature, initial dye concentration and biosorbent dosage, were evaluated in batch experiments. The optimum removal of MG was found to be  86.7 mg g-1 at pH 10, 1.0 g L-1 of biomass dosage and 45°C. The kinetic data of dye removal was better described by the pseudo-second-order model. The adsorption process followed the Langmuir isotherm model and the maximum biosorption capacity was estimated to be  243.9 mg g-1 (at 25°C). The negative values of ∆G° and the positive value of ∆H° indicated that the MG biosorption onto yeast-MnO2 composites is spontaneous and endothermic. Fourier transform infrared spectroscopy (FTIR) indicated that the nano-MnO2 particles deposited on yeast-MnO2 composites surface facilitated the MG adsorption. It was concluded that baker’s yeast-MnO2 composites have potential for application as adsorbent for removal of MG from aqueous solution.

2012 ◽  
Vol 9 (3) ◽  
pp. 1457-1480 ◽  
Author(s):  
R. Bhaumik ◽  
N. K. Mondal ◽  
B. Das ◽  
P. Roy ◽  
K. C. Pal ◽  
...  

A new medium, eggshell powder has been developed for fluoride removal from aqueous solution. Fluoride adsorption was studied in a batch system where adsorption was found to be pH dependent with maximum removal efficiency at 6.0. The experimental data was more satisfactorily fitted with Langmuir isotherm model. The kinetics and the factor controlling adsorption process fully accepted by pseudo-second-order model were also discussed. Eawas found to be 45.98 kJmol-1by using Arrhenius equation, indicating chemisorption nature of fluoride onto eggshell powder. Thermodynamic study showed spontaneous nature and feasibility of the adsorption process with negative enthalpy (∆H0) value also supported the exothermic nature. Batch experiments were performed to study the applicability of the adsorbent by using fluoride contaminated water collected from affected areas. These results indicate that eggshell powder can be used as an effective, low-cost adsorbent to remove fluoride from aqueous solution as well as groundwater.


2021 ◽  

<p>Layered double hydroxides (LDHs) of MgM3+ (M3+=Al and Cr) were synthesized by coprecipitation method to form Mg/Al and Mg/Cr LDHs. The materials were applied as adsorbents of malachite green in aqueous solution. The physical properties of Mg/Al and Mg/Cr were analyzed using XRD, FTIR, BET and TGDTA characterizations. The XRD pattern shows the characteristic of LDHs which has diffraction at 11.470 (003) and at 34.690 (012) for Mg/Al and 12.450 (003) and at 380 (012) for Mg/Cr. The interlayer spaces of Mg/Al and Mg/Cr LDHs were 7.71 Å and 7.62 Å, respectively. The surface area of Mg/Al was higher than Mg/Cr. The FTIR spectra confirm that the intense peak at 1385 cm-1 denotes vibration of nitrate bond and M-O band in under 1000 cm-1. Thus the Mg/Al and Mg/Cr LDHs were applied as adsorbents to remove malachite green in aqueous solution. The results of malachite green adsorption showed that malachite green was adsorbed onto Mg/Al and Mg/Cr followed pseudo second order and Langmuir adsorption parameter. The adsorption capacity of malachite green for Mg/Al and Mg/Cr was 44.444 mg/g and 33.784 mg/g, respectively. The thermodynamic study showed that the adsorption process was spontaneous, endothermic and favored in high temperature. The regeneration process showed that Mg/Al and Mg/Cr LDHs has high stability structure toward reusability of adsorbent until three cycles adsorption process.</p>


2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Saeedeh Hashemian ◽  
Mohammad Reza Shahedi

Ag/kaolin nanocomposite was prepared by reduction of Ag+ion with ethanol at alkaline condition on kaolin surface. Nanocomposite was characterized by FTIR, XRD, TEM, and BET methods. Results showed the Ag/kaolin composite has particle size 50 nm. The surface area was increased from kaolin to Ag/kaolin from 1.0215 to 7.409 m2 g−1, respectively. Ag/kaolin nanocomposite was used for adsorption of acid cyanine 5R (AC5R) from aqueous solution. The effect of parameters such as contact time, pH, and mass of nano composite has been investigated. The maximum percentage of adsorption of AC5R was found at pH 3 and contact time of 60 min. The higher percentage removal of AC5R by Ag/kaolin than kaolin can be attributed to catalytic activity of Ag on the surface of kaolin. The experimental data was fitted by pseudo-second-order kinetic model. The adsorption isotherm data could be well interpreted by Langmuir isotherm model. From the results of thermodynamic study, the adsorption process of AC5R onto Ag/kaolin nanocomposite was spontaneous and endothermic process. The process is clean and safe for purifying of water pollution.


2021 ◽  
Vol 21 (6) ◽  
pp. 1471
Author(s):  
Poedji Loekitowati Hariani ◽  
Addy Rachmat ◽  
Muhammad Said ◽  
Salni Salni

Due to their toxicity, Cd(II) and Ni(II) ions in the environment are severe. The hydroxyapatite composite was improved with magnetic MnFe2O4 to remove Cd(II) and Ni(II) ions from an aqueous solution. Hydroxyapatite was extracted from Snakehead (Channa striata) fish bones via alkaline-heat treatment. The hydroxyapatite/MnFe2O4 composite performance was analyzed through XRD, FTIR, SEM-EDS, BET analysis, and VSM, and the results reveal that the hydroxyapatite/MnFe2O4 composite shows good magnetic properties of 21.95 emu/g. The kinetics evaluation confirmed that the pseudo-second-order kinetics model was more suitable to describe the adsorption of Cd(II) and Ni(II) ions by hydroxyapatite/MnFe2O4 composite from the solution. The Langmuir isotherm model was suitable to describe the adsorption process of the Cd(II) and Ni(II)  ions, where the adsorption capacities for Cd(II) and Ni(II) are 54.3 and 47.4 mg/g, respectively. Desorption of Cd(II) and Ni(II) ions from hydroxyapatite/MnFe2O4 composite using NaCl as the eluent was more effective than EDTA. The findings of this study indicate that hydroxyapatite/MnFe2O4 can reduce Cd(II) and Ni(II) ions in wastewater so that it can recover natural resources.


2015 ◽  
Vol 17 (4) ◽  
pp. 784-795 ◽  

<div> <p>Low cost agricultural waste adsorbents can be viable alternatives to activated carbon for the treatment of contaminated wastewater. Sugarcane Bagasse, an abundant agriculture waste in Egypt, was used in the present study to prepare activated carbon. Batch adsorption experiments were conducted to study its effectiveness to remove cationic dye methylene blue from aqueous solution. The effects of initial dye concentrations, agitation time, solution pH and temperature on methylene blue dye removal were investigated. The optimum pH value for the maximum percentage removal of the dye was 7. Adsorption isotherms were determined and modeled with Redlich&ndash;Peterson, Langmuir and Freundlich equations at 20&ordm;C.The kinetic data were analyzed using Pseudo-first order, pseudo-second order. The mechanism of the adsorption process was determined from the intraparticle diffusion model. Thermodynamic parameters such as standard enthalpy (ΔH&deg;), standard entropy (ΔS&deg;) and free energy (ΔG&deg;) were determined.&nbsp; The equilibrium data were best fitted to the Redlich&ndash;Peterson isotherm model .The adsorption kinetics was found to follow the pseudo-second-order kinetic model with good correlation coefficient. The positive ΔH<sup>◦</sup> value indicated that the adsorption process was endothermic in nature. The results revealed sugarcane bagasse activated carboncould be employed as a low-cost alternative adsorbent in wastewater treatment.&nbsp;</p> </div> <p>&nbsp;</p>


2018 ◽  
Vol 20 (2) ◽  
pp. 234-242 ◽  

In this study, raw boron enrichment waste was treated with hydrochloric acid and ultrasound at 35-kHz frequency for 60 minutes. To optimize the adsorption conditions for removal of methylene blue (MB) from synthetic wastewaters using raw boron enrichment waste (BEW), acid modified boron enrichment waste (HBEW) and ultrasound modified BEW (UBEW) by adsorption process and to compare the adsorption efficiency of chemical and ultrasonic modifications of BEW were aimed. The optimum adsorption conditions were determined economically and eco-friendly aspect and MB removal percents were found as 80%, 80% and 92% at optimum conditions for BEW, HBEW and UBEW, respectively. The maximum regression coefficient values were obtained as 0.911, 0.998 and 0.984 for BEW, HBEW and UBEW, respectively at Langmuir isotherm model. The adsorption rate was fitted well to pseudo-second order kinetics according to a good correlation coefficient. The adsorption of MB onto adsorbents studied is spontaneous in nature and feasible because of negative ∆G values. The results indicated that the boron enrichment process waste could be a suitable adsorbent for removal of MB from aqueous solution. The maximum adsorption capacities were equal to about 107,0 mg/g, 160,7 mg/g and 145,3 mg/g for BEW, HBEW and UBEW adsorbents at 298 K, respectively. The maximum dye removal percent was achieved for UBEW as 92% and ultrasound assisted modification was found more efficient method compared with acidic modification for MB removal.


2021 ◽  
Vol 6 (3) ◽  
pp. 209-217
Author(s):  
Neza Rahayu Palapa ◽  
Tarmizi Taher ◽  
Alfan Wijaya ◽  
Aldes Lesbani

Modification of Cu/Cr layered double hydroxides (LDHs) has been conducted by intercalation using Keggin type polyoxometalate [a-SiW12O40]4- to form CuCr-[a-SiW12O40]. The materials were analyzed by XRD, FTIR, and surface area analyses. Furthermore, materials were used as selectivity adsorbents of cationic dyes such as malachite green, rhodamine-B and methylene blue. The malachite green is more selective than others from an aqueous solution. The adsorption of malachite green showed that the adsorption capacity of CuCr-[a-SiW12O40] was higher than pristine LDHs. The adsorption process was followed pseudo second order kinetic model and Langmuir isotherm adsorption. The Qmax value of CuCr-[a-SiW12O40] reached 55.322 mg/g at 323 K after 100 minutes adsorption time. Thermodynamic parameters such as ΔG, ΔH and ΔS confirm that the adsorption process was endothermic, spontaneous, and more favorable at high temperatures. The intercalated material was higher structural stability toward reusability adsorbent than pristine LDHs.


Materials ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2133 ◽  
Author(s):  
Xuli Li ◽  
Yue Zeng ◽  
Fangyuan Chen ◽  
Teng Wang ◽  
Yixin Li ◽  
...  

Zeolite analcime (EMANA) was synthesized through the hydrothermal method by using carbothermal reduction electrolytic manganese residue (CR-EMR). The structural properties of EMANA and CR-EMR were studied using various characterization techniques. After hydrothermal synthesis, the CR-EMR became super-microporous, and the surface area increased by 4.76 times than before. Among the various synthesized zeolites, 6 h-synthesized EMANA was selected as the best adsorbent for macrolide antibiotics in aqueous solution. The adsorption performance of EMANA on the adsorption capacity was examined by using various experimental parameters, such as contact time (0–24 h), initial concentration (50–300 mg/L), temperature (30–50 °C) and pH (3–13). The experimental results were also analyzed by the Langmuir and Freundlich adsorption models, with the latter obtaining better representation. The adsorption process could be described well by the pseudo-second-order model, even under a low concentration (50 mg/L). This result suggests that the adsorption process of macrolide antibiotics is due to chemisorption. According to the Fourier Transform infrared spectroscopy (FT-IR) results, the adsorption of zeolite was mainly due to its hydroxyl group, which played an important role during the adsorption process. Moreover, EMANA is more suitable for treatment of roxithromycin (ROX) than azithromycin (AZM), because ROX has more adsorption sites for the hydroxyl group.


Author(s):  
Nur Hidayatul Nazirah Kamarudin ◽  
Herma Dina Setiabudi ◽  
Aishah Abdul Jalil ◽  
Siti Hazirah Adam ◽  
Nur Fatien Muhamad Salleh

This study applied ultrasonic irradiation technique to remove acid orange 52 (AO52) and in the meantime utilizing the potential adsorbent, Lapindo volcanic mud (LVM). LVM was collected from the erupted mud in Sidoarjo, Indonesia and calcined prior the adsorption process. Previously in another study, Lapindo was proven to be efficient for adsorption of dyes in single adsorption method. In this study, the combination of adsorption with ultrasound, or as known as sono-sorption shows that the adsorptivity increased from 95.54 mg/g to 129.5 mg/g. The isotherm study shows that this process obeyed Langmuir isotherm model with adsorption capacity of 833.33 mg/g. The enhancement of sono-sorption method as compared to conventional method is believed to be resulted from the facilitated mass transfer driven by the ultrasound, along with the adsorption ability of LVM. The kinetic study fit to the pseudo second order equation. Copyright © 2019 BCREC Group. All rights reservedReceived: 1st October 2018; Revised: 22nd December 2018; Accepted: 7th January 2019; Available online: 25th January 2019; Published regularly: April 2019How to Cite: Kamarudin, N.H.N., Setiabudi, H.D., Jalil, A.A., Adam, S.H., Salleh, N.F.M. (2019). Utilization of Lapindo Volcanic Mud for Enhanced Sono-sorption Removal of Acid Orange 52. Bulletin of Chemical Reaction Engineering & Catalysis, 14 (1): 189-195 (doi:10.9767/bcrec.14.1.3326.189-195)Permalink/DOI: https://doi.org/10.9767/bcrec.14.1.3326.189-195  


2020 ◽  
Vol 38 (9-10) ◽  
pp. 483-501
Author(s):  
Nguyen Thi Huong ◽  
Nguyen Ngoc Son ◽  
Vo Hoang Phuong ◽  
Cong Tien Dung ◽  
Pham Thi Mai Huong ◽  
...  

The Fe3O4/Talc nanocomposite was synthesized by the coprecipitation-ultrasonication method. The reaction was carried out under a inert gas environment. The nanoparticles were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), fourier-transform infrared spectroscopy (FT-IR) and vibrating sample magnetometry techniques (VSM), the surface area of the nanoparticles was determined to be 77.92 m2/g by Brunauer-Emmett-Teller method (BET). The kinetic data showed that the adsorption process fitted with the pseudo-second order model. Batch experiments were carried out to determine the adsorption kinetics and mechanisms of Cr(VI) by Fe3O4/Talc nanocomposite. The adsorption process was found to be highly pH-dependent, which made the material selectively adsorb these metals from aqueous solution. The isotherms of adsorption were also studied using Langmuir and Freundlich equations in linear forms. It is found that the Langmuir equation showed better linear correlation with the experimental data than the Freundlich. The thermodynamics of Cr(VI) adsorption onto the Fe3O4/Talc nanocomposite indicated that the adsorption was exothermic. The reusability study has proven that Fe3O4/Talc nanocomposite can be employed as a low-cost and easy to separate.


Sign in / Sign up

Export Citation Format

Share Document