scholarly journals Analysis of the actions of NPP personnel in making decisions

Author(s):  
Maria Berberova ◽  
Aida Hakimova ◽  
Oleg Zolotarev

The operational experience of nuclear facilities shows that personnel reliability has a significant impact on safety. We consider the reliability of the staff as the property (ability) of the staff to accurately and timely perform the necessary actions prescribed by the operating instructions, both during normal operation and in an accident. Personnel Reliability Analysis (PRA) is one of the significant tasks of probabilistic safety analysis. There are problem situations at NPP: the analysis methods and techniques used, the variety of solving tasks, the wide range and diverse nature of errors that a human operator can potentially make, the numerous factors affecting the probability of a particular error. All this makes it necessary to develop an automated personnel reliability analysis system that can support a specialist performing probabilistic safety analysis (PSA) in terms of performing the reliability analysis of the human operator, to ensure the required accuracy, quality and completeness of the results of the personnel reliability analysis.

2012 ◽  
Vol 27 (3) ◽  
pp. 319-332 ◽  
Author(s):  
Ramin Barati ◽  
Saeed Setayeshi

The purpose of this paper is to cover human reliability analysis of the Tehran research reactor using an appropriate method for the representation of human failure probabilities. In the present work, the technique for human error rate prediction and standardized plant analysis risk-human reliability methods have been utilized to quantify different categories of human errors, applied extensively to nuclear power plants. Human reliability analysis is, indeed, an integral and significant part of probabilistic safety analysis studies, without it probabilistic safety analysis would not be a systematic and complete representation of actual plant risks. In addition, possible human errors in research reactors constitute a significant part of the associated risk of such installations and including them in a probabilistic safety analysis for such facilities is a complicated issue. Standardized plant analysis risk-human can be used to address these concerns; it is a well-documented and systematic human reliability analysis system with tables for human performance choices prepared in consultation with experts in the domain. In this method, performance shaping factors are selected via tables, human action dependencies are accounted for, and the method is well designed for the intended use. In this study, in consultations with reactor operators, human errors are identified and adequate performance shaping factors are assigned to produce proper human failure probabilities. Our importance analysis has revealed that human action contained in the possibility of an external object falling on the reactor core are the most significant human errors concerning the Tehran research reactor to be considered in reactor emergency operating procedures and operator training programs aimed at improving reactor safety.


2012 ◽  
Vol 9 (1) ◽  
pp. 43 ◽  
Author(s):  
Hueyling Tan

Molecular self-assembly is ubiquitous in nature and has emerged as a new approach to produce new materials in chemistry, engineering, nanotechnology, polymer science and materials. Molecular self-assembly has been attracting increasing interest from the scientific community in recent years due to its importance in understanding biology and a variety of diseases at the molecular level. In the last few years, considerable advances have been made in the use ofpeptides as building blocks to produce biological materials for wide range of applications, including fabricating novel supra-molecular structures and scaffolding for tissue repair. The study ofbiological self-assembly systems represents a significant advancement in molecular engineering and is a rapidly growing scientific and engineering field that crosses the boundaries ofexisting disciplines. Many self-assembling systems are rangefrom bi- andtri-block copolymers to DNA structures as well as simple and complex proteins andpeptides. The ultimate goal is to harness molecular self-assembly such that design andcontrol ofbottom-up processes is achieved thereby enabling exploitation of structures developed at the meso- and macro-scopic scale for the purposes oflife and non-life science applications. Such aspirations can be achievedthrough understanding thefundamental principles behind the selforganisation and self-synthesis processes exhibited by biological systems.


1993 ◽  
Vol 32 (2) ◽  
pp. 226-228
Author(s):  
Zakir Hussain

The book; under review provides a valuable account of the issues and factors in managing the irrigation system, and presents a lucid and thorough discussion on the performance of the irrigation bureaucracies. It comprises two parts: the first outlines the factors affecting irrigation performance under a wide range of topics in the first five chapters. In Chapter One, the authors have attempted to assess the performance of the irrigation bureaucracies, conceptualise irrigation management issues, and build an empirical base for analysis while drawing upon the experience of ten country cases in Asia, Africa, and Latin America. The Second Chapter focuses on the variations in the management structures identified and the types of irrigation systems; and it defines the variables of the management structures. The activities and objectives of irrigation management are discussed in Chapter Three. The objectives include: greater production and productivity of irrigation projects; improved water distribution; reduction in conflicts; greater resource mobilisation and a sustained system performance. The authors also highlight the performance criterion in this chapter. They identify about six contextual factors which affect the objectives and the performance of irrigation, which are discussed in detail in Chapter Four. In Chapter Five, some organisational variables, which would lead to improvements in irrigation, are examined.


2020 ◽  
Vol 26 (1) ◽  
pp. 86-93
Author(s):  
D. V. Slivinsky ◽  
I. A. Fomina ◽  
D. G. Menshikh

The presented study determines the role of business aviation in the modern economy and examines the specific features of its development in Russia.Aim. The study aims to analyze the development of business aviation in Russia and its correlation with economic development in general.Tasks. The authors determine the benefits of business aviation as a business tool, examine the specific features of the Russian business aviation market and problems of its development, and identify factors that affect the development of business aviation in Russia.Methods. This study uses the methods of comparative and retrospective analysis, cross-country comparison, systems approach, and expert analytics.Results. Business aviation is a new segment of civil aviation for Russia. Therefore, it is advisable to rely on foreign practices in the management of its development. In many countries, business aviation is a separate industry that specializes in providing transport services to a wide range of corporate clients and/or individuals. The development of this industry is associated with the economic growth rate and the development level of the national economy, and also depends on the national institutional specifics. This study describes the specific features of development of business aviation in Russia and problems arising in the organization and management of this type of business.Conclusions. The authors develop a system of factors affecting the development of business aviation in Russia, describe the major problems of this industry, and propose solutions. The results of this study can be used in the development (adjustment) of business aviation development strategies in Russia both at the industrial and corporate level, and in the implementation of the national policy in this field.


2020 ◽  
Author(s):  
Salime Goharinezhad

BACKGROUND World Health Organization declared the vaccine hesitancy as a global public health threat in 2019. Since even a slight reduction in vaccine coverage rates can lead to a decrease in herd immunity, it is imperative to explore the underlying factors affecting vaccine hesitancy. in specific contexts, considering socioeconomic and cultural variation, to ensure interventions targeting hesitancy are well formulated and intervened. OBJECTIVE The main objective of this study is to identify underlying factors affecting vaccine hesitancy in Iran. METHODS A framework qualitative study will be conducted in the west of Tehran province in 2020. Participants in the study will be recruited hesitance-parents who extracted from the SIB system (an electronic health record in Iran) to maximize diversity. Interviews will be analyzed based on ''Determinants of Vaccine Hesitancy Matrix'' which developed by the WHO-SAGE Working Group. RESULTS deep understanding from the context-specific reasons for vaccine hesitancy cause to formulate better strategies to address them. The ultimate goal of this study is to inform future policies to increase the uptake of the vaccine in Iran. CONCLUSIONS This result of study will show variety opinions about vaccination among different types of socioeconomic and demographic households. The wide range of reasons related to vaccine hesitancy imply to more comprehensive, context-specific interventions. Today, the most important intervention issues focus on improving information about effectiveness and safety of vaccines, while other interventions for promoting vaccination is need to addressed.


Textiles ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 55-85
Author(s):  
Tufail Hassan ◽  
Hafsa Jamshaid ◽  
Rajesh Mishra ◽  
Muhammad Qamar Khan ◽  
Michal Petru ◽  
...  

Recently, very rapid growth has been observed in the innovations and use of natural-fiber-based materials and composites for acoustic applications due to their environmentally friendly nature, low cost, and good acoustic absorption capability. However, there are still challenges for researchers to improve the mechanical and acoustic properties of natural fiber composites. In contrast, synthetic fiber-based composites have good mechanical properties and can be used in a wide range of structural and automotive applications. This review aims to provide a short overview of the different factors that affect the acoustic properties of natural-fiber-based materials and composites. The various factors that influence acoustic performance are fiber type, fineness, length, orientation, density, volume fraction in the composite, thickness, level of compression, and design. The details of various factors affecting the acoustic behavior of the fiber-based composites are described. Natural-fiber-based composites exhibit relatively good sound absorption capability due to their porous structure. Surface modification by alkali treatment can enhance the sound absorption performance. These materials can be used in buildings and interiors for efficient sound insulation.


2021 ◽  
Vol 17 (5) ◽  
pp. 155014772110181
Author(s):  
Wei-Ling Lin ◽  
Chun-Hung Hsieh ◽  
Tung-Shou Chen ◽  
Jeanne Chen ◽  
Jian-Le Lee ◽  
...  

Today, the most serious threat to global health is the continuous outbreak of respiratory diseases, which is called Coronavirus Disease 2019 (COVID-19). The outbreak of COVID-19 has brought severe challenges to public health and has attracted great attention from the research and medical communities. Most patients infected with COVID-19 will have fever. Therefore, the monitoring of body temperature has become one of the most important basis for pandemic prevention and testing. Among them, the measurement of body temperature is the most direct through the Forehead Thermometer, but the measurement speed is relatively slow. The cost of fast-checking body temperature measurement equipment, such as infrared body temperature detection and face recognition temperature machine, is too high, and it is difficult to build Disease Surveillance System (DSS). To solve the above-mentioned problems, the Intelligent pandemic prevention Temperature Measurement System (ITMS) and Pandemic Prevention situation Analysis System (PPAS) are proposed in this study. ITMS is used to detect body temperature. However, PPAS uses big data analysis techniques to prevent pandemics. In this study, the campus field is used as an example, in which ITMS and PPAS are used. In the research, Proof of Concept (PoC), Proof of Service (PoS), and Proof of Business (PoB) were carried out for the use of ITMS and PPAS in the campus area. From the verification, it can be seen that ITMS and PPAS can be successfully used in campus fields and are widely recognized by users. Through the verification of this research, it can be determined that ITMS and PPAS are indeed feasible and capable of dissemination. The ITMS and PPAS are expected to give full play to their functions during the spread of pandemics. All in all, the results of this research will provide a wide range of applied thinking for people who are committed to the development of science and technology.


Sign in / Sign up

Export Citation Format

Share Document