KINERJA STRUKTUR GEDUNG BETON BERTULANG DENGAN BENTANG KANTILEVER 4 M MENGGUNAKAN METODE ANALISIS PUSHOVER

EXTRAPOLASI ◽  
2020 ◽  
Vol 17 (2) ◽  
pp. 16-25
Author(s):  
Retno Trimurtiningrum ◽  
Faradlillah Saves ◽  
Laily Endah Fatmawati ◽  
Yusak Adi Setiawan

AbstractThe advance of technology and design in construction field are developing. Therefore, variety of structural design becomes unique. The shape of building with cantilever seems increasingly atrractive because it is rated to have high architecture. Cantilever form with a longer span of more than 1/3 L is increasingly desirable because it provides a unique exterior appearance,as well as a double function other than as a room can also functioned as a canopy.The building is designed to be a 7-storey building with cantilever beam on the 6th – 7th floor for 4 m. This study used the reference of SNI 03-2847-2013 in designing the main structural elements of reinforced concrete, SNI 03-1726-2012 for the designing the earthquake load, SNI 03-1727-2013 and PPIUG1983 for gravity load planning. From the results of analysis, the interstory drift that occurs both the X-direction and the direction of Y is 50.544 mm and 39.956 mm, each of which qualifies the interstory drift limit according to SNI 03-1726-2012. Structural performance levels are being catagories in immediate occupancy level which means there is no structural damage and the building can be used immediately according to its function AbstrakKemajuan teknologi dan desain di bidang konstruksi semakin berkembang. Hal tersebut, membuat beragamnya variasi desain struktur yang semakin hari semakin unik. Bentuk-bentuk gedung dengan kantilever tampaknya semakin diminati karena dinilai mempunyai arsitektur yang tinggi. Bentuk kantilever yang mempunyai bentang lebih panjang, yaitu lebih dari 1/3 L makin diminati karena memberikan tampilan eksterior yang unik, serta dapat berfungsi ganda selain sebagai ruangan juga dapat difungsikan sebagai kanopi. Gedung yang didesain merupakan gedung 7 lantai dengan balok kantilever pada lantai 6 dan 7 sepanjang 4 m. Penelitian ini menggunakan acuan SNI 03-2847-2013 dalam mendesain elemen struktur utama beton bertulang, SNI 03-1726-2012 untuk perencanaan beban gempa, SNI 03-1727-2013 dan PPIUG 1983 untuk perencanaan beban gravitasi. Dari hasil analisis didapatkan besar simpangan yang terjadi baik arah x maupun arah Y adalah sebesar 50,544 mm dan 39,956 mm, dimana masing-masing memenuhi syarat batas simpangan antar lantai sesuai SNI 03-1726-2012. Level kinerja struktur termasuk level immediate occupancy yang berarti tidak terjadi kerusakan structural dan gedung dapat segera dipakai sesuai dengan fungsinya.

Author(s):  
Dwi Kurniati ◽  
Pelipus Bali Loko

The Faculty of Engineering Faculty of Engineering Building of PGRI Yogyakarta (UPY) is planning to be on medium ground, with a height of 7 floors functioned as a lecture hall.This building needs to be simulated the thrust of the earthquake load, in order to know the performance of the building.The purpose of this research is to want to know the performance value of poit direction x and direction y and performance level based on ATC 40 from upy engineering faculty building.Research method with the help of Etabs v16 software, in accordance with the guidelines of the National Standardization Agency namely SNI 1726-2012 and SNI 2847-2013.The results of the study obtained a peformance point value for push x 0.004 of 0.004 and push y of 0.003.As well as the level of performance is Immediate Occupancy (IO) which can be interpreted that in the event of an earthquake the structure is able to withstand an earthquake, the building does not suffer structural and non structural damage so that the building can be directly reused.


1957 ◽  
Vol 3 (2) ◽  
pp. 239-248 ◽  
Author(s):  
Shigefumi Okada ◽  
Lee D. Peachey

1. Exposure of isolated liver mitochondria to high doses of gamma rays from a Co60 source causes the level of DNase II activity to increase. Treatment of the mitochondria with sonic vibration causes a further elevation of the activity to a level which is independent of the prior radiation dose. 2. Such increased mitochondrial DNase II activity appears to be due to the "structural damage" of the subcellular particulates caused by the ionizing radiation. Other methods of disrupting the mitochondrial structure also cause increased DNase II activity. A causal relationship between the structural alteration and the increased enzymatic activity is postulated. 3. The DNase II activity appears to be closely associated with the structural elements of the mitochondria and remains associated with the fragments after irradiation. 4. Upon irradiation, the mitochondrial suspension releases ultraviolet-absorbing materials which are probably nucleotide in nature. 5. The possibility of localization of DNase activity in the lysosome fraction of de Duve (15) is discussed. It is felt that DNase II is at least in part a mitochondrial enzyme and that probably the conclusions drawn here would be applicable to any DNase II present in the lysosomes as well. 6. Irradiation of whole liver homogenate causes no increased DNase II activity. The experiments do not provide any information on the presence or action of protective substances in the homogenate.


CIVED ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 117
Author(s):  
Lisyana Junelin Restu ◽  
Eka Juliafad ◽  
Fajri Yusmar

AbstractInpres market block IV Pasar Raya Padang is not designed as a shelter building, but is designated as a vertical evacuation site when a tsunami occurs. This study aims to evaluate the structural performance of Inpress market block IV zone B. The method used for this research is the pushover analysis method. According to FEMA P-646/2019, vertical evacuation refuge structures are included in tsunami risk category IV, based on the risk category the maximum performance level is at the Immediate Occupancy (IO). For loads on buildings, refer to SNI 1727:2020 and SNI 1726:2019 for earthquake loads. For the calculation of the capacity of concrete structural elements, refer to SNI 2847:2019. Structural analysis was carried out using the SAP2000 version 16. After analysis, based on performance points, drift ratio that occur due to earthquake loading in X-direction and Y-direction are 0,05875% and 0,0067%. The maximum total drift that occurs is smaller than that required by ATC-40 for the Immediate Occupancy performance level, which is 1%. Thus, the structure performance level is Immediate Occupancy. This means that the Inpress market block IV building is still strong enough against earthquake loads.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Rizki Efrida

Pembangunan konstruksi teknik sipil mengalami perkembangan yang sangat pesat seiring dengan berkembangnya zaman sehingga menuntut kita lebih kreatif dalam perancangan struktur baik dalam bentuk bangunan beraturan maupun tidak beraturan yaitu, bangunan setback dan bangunan soft story. Di Indonesia, tantangan yang dihadapi dalam kontruksi gedung bertingkat adalah adanya resiko akibat gempa. Salah satu metode untuk menganalisis beban gempa adalah analisis pushover. Analisis pushover merupakan prosedur analisis untuk mengetahui perilaku keruntuhan suatu bangunan terhadap gempa. Penelitian dilakukan untuk mengetahui seberapa besar pengaruh setback dan soft story yaitu bangunan tanpa dinding pengisi pada lantai dasar terhadap kinerja struktur akibat beban gempa berdasarkan hasil kurva pushover. Stuktur bangunan dimodelkan sebagai portal 2 dimensi yang tanpa adanya dinding pengisi pada lantai dasar yaitu terdiri dari 4 model rangka penuh, setback1, setback2, dan setback3. Hasil analisis dalam penelitian ini menunjukkan bahwa kontribusi dinding pengisi yang terbuat dari dinding bata mempengaruhi kekakuan lateral struktur, serta dengan dikuranginya setback pada struktur bangunan mengakibatkan nilai kekakuan semakin kecil sehingga nilai daktilitas semakin besar. Pada struktur gedung rangka penuh dan setback1 lunak kondisi bangunan sudah mengalami rusak parah atau runtuh saat terjadi gempa kuatdikarenakan terbentuknya sendi plastis pada kolom lantai pertama.  Kata Kunci : Analisis Pushover, Dinding Pengisi, Setback, Soft Story  ABSTRACT The construction of civil engineering construction has developed very rapidly along with the development of the era so it demands that we are more creative in the design of structures both in the form of irregular and irregular buildings ie, setback building and soft story building. In Indonesia, the challenge faced in the construction of multi-storey building is the risk caused by the earthquake. One method to analyze earthquake loads is pushover analysis. Pushover analysis is an analytical procedure to determine the collapse behavior of a building against earthquake. The research was conducted to find out how big the effect of setback and soft story that is building without wall filler on the ground floor to the structure performance due to earthquake load based on the result of pushover curve. The structure of the building is modeled as a 2-dimensional portal without the filler wall on the ground floor consisting of 4 full frame models, setback1, setback2, and setback 3. The results of the analysis in this study indicate that the contribution of wall filler made of brick walls affect the lateral stiffness of the structure, as well as with the reduced setback on the structure of the building resulting in smaller stiffness value so that the greater the ductility value. In full skeletal structure and soft setback1 the condition of the building has been severely damaged or collapsed during a strong earthquake due to the formation of plastic joints in the first floor column. Keywords: Pushover Analysis, Setback, Soft Story, Wall Filler


1940 ◽  
Vol 44 (356) ◽  
pp. 653-656
Author(s):  
W. R. Osgood

Explicitly or implicitly the yield strength of a material is often used as a measure of incipient structural damage. With the yield strength determined by conventional methods, however, it cannot be said in general for two structural elements geometrically alike but of different materials that similar loads, producing maximum stresses equal to the yield strengths in the two cases, are simply related to the yield strengths. A definition of yield strength is proposed in this paper which often has the advantage that, for geometrically similar structures of different materials, loads producing maximum stresses equal to the yield strength are proportional to the yield strength.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Luis S. Vaca Oyola ◽  
Mónica R. Jaime Fonseca ◽  
Ramsés Rodríguez Rocha

This study presents the damaged flexibility matrix method (DFM) to identify and determine the magnitude of damage in structural elements of plane frame buildings. Damage is expressed as the increment in flexibility along the damaged structural element. This method uses a new approach to assemble the flexibility matrix of the structure through an iterative process, and it adjusts the eigenvalues of the damaged flexibility matrices of each system element. The DFM was calibrated using numerical models of plane frames of buildings studied by other authors. The advantage of the DFM, with respect to other flexibility-based methods, is that DFM minimizes the adverse effect of modal truncation. The DFM demonstrated excellent accuracy with complete modal information, even when it was applied to a more realistic scenario, considering frequencies and modal shapes measured from the recorded accelerations of buildings stories. The DFM also presents a new approach to simulate the effects of noise by perturbing matrices of flexibilities. This approach can be useful for research on realistic damage detection. The combined effects of incomplete modal information and noise were studied in a ten-story four-bay building model taken from the literature. The ability of the DFM to assess structural damage was corroborated. Application of the proposed method to a ten-story four-bay building model demonstrates its efficiency to identify the flexibility increment in damaged structural elements.


2019 ◽  
Vol 969 ◽  
pp. 247-252
Author(s):  
S. Neelavathi ◽  
K.G. Shwetha ◽  
C.L. Mahesh Kumar

In the present situation the growth of population is increasing rapidly. In view of this, the development of the buildings are changing its dimension to high rise structures further having trends of structural irregularities. These kinds of irregularities in the structure cannot be avoided as it is more vulnerable to the seismic actions. The structure fails by the uneven moments created by the seismic actions because of the irregularities in the structure which is based on the parameters like storey drift, displacement, torsional effects etc., In this paper the effects of the torsional irregularity is studied and the failure has been minimized by adding necessary elements like shear wall and bracings where ever required. In Present study we have considered the 20 storey building of reinforced concrete structure which includes five models of different regular and irregular shaped structures which are subjected to earthquake load and are modeled by using ETABS version 9. Analysis results elaborate the parameters like displacement, time period, storey drift and comparisons of the results among the set of models.


Columns rest on the beam without foundation are called floating column.They are used commonly in multi-storey buildings which are purposed to hold parking at ground floor or open halls at higher floors. Discontinuation within the load transfer path is seen in this column. Thus they are designed for gravity loads. But these structures aren’t designed for earthquake loads.In present scenario structures with floating column may be a common characteristic in urban India. However in tectonic areas, this type of structure is not preferred due to discontinuity of load transfer path i.e. whole earthquake load on the structure is shared by the shear walls without any loads on the floating columns.This paper review the nature of a multi-storey building under quake forces with and without of floating columns. This analysis focus the importance of specially identifying the presence of the floating column within the study of the struture, establish its correlation with the building without a floating column using designing software Extended three dimensional analysis of building systems (ETABS). This paper also discusses the performance of structure having floating column in seismically active areas. Besides these various parameter such as maximum displacement, effect on number of storey on drift, base shear are also studied.


2019 ◽  
Vol 7 (1) ◽  
pp. 28-33
Author(s):  
Ольга Хрянина ◽  
Ol'ga Hryanina ◽  
Юсеф Янгуразов ◽  
Yousef Yangurazov

The authors summarized the extensive experience of reconstruction of buildings taking into account the superstructure. A visual full-scale inspection of the actual technical condition of the main bearing and enclosing structures of a non-residential one-storey building was carried out. The possibility of superstructure on the floor of the building using lightweight structural elements of high rigidity is considered. According to the results of the survey, an assessment of the technical condition of the structures is given. The General satisfactory condition of the foundations, walls, internal supports, building covering was revealed. Unacceptable deflections of plates, cracks in the plates and between them are not fixed. However, in the wall at row G has haphazardly small cracks on external verst masonry, which appeared likely to result from the soaking of the masonry from leaks from the roof and changes in temperature and humidity. At the moment, the cracks have stabilized, the leaks have been eliminated. The calculations of the foundations of the test conditions of the stress under the foot and stress check given add-in. Conclusions and recommendations are formulated. For the wall on the axis G in the process of construction and operation must be monitored. In case of activation of development of constructive cracks to solve a question of possible strengthening.


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Bambang Hadibroto ◽  
Sahala Ronitua

Bangunan yang sering rusak apabila gempa bumi terjadi adalah bangunan sederhana atau bangunan non-engineering. Bangunan non-engineered adalah bangunan yang umumnya merupakan bangunan penduduk, rumah tinggal, dan lain-lain yang kebanyakan didirikan oleh masyarakat biasa tanpa bantuan ahli struktur. Telah banyak bangunan yang rusak akibat gempa, Sehingga  sangat dibutuhkan pengembangan metode perbaikan dan perkuatan struktur bangunan untuk memperbaiki dan memperkuat bangunan yang rusak akibat gempa. Titik-titik lemah bangunan yang merupakan titik-titik kegagalan bangunan akibat beban gempa, antara lain : join fondasi-kolom, join balok-kolom, dinding pasangan dan sistem struktur atap. Dibutuhkan perbaikan pada elemen-elemen tersebut untuk mengembalikan fungsinya seperti semula serta elemen-elemen tersebut sangat membutuhkan perkuatan sebelum terjadi gempa serta pendetailan penulangan yang akurat. Perbaikan dan perkuatan elemen struktur bangunan yang telah dikembangkan antara lain : perbaikan dinding retak dengan  metode  plesteran yang diperkuat  kawat, melapisi elemen struktur bangunan dengan lapisan beton baru, penambahan tulangan dan lapisan beton pada elemen balok, kolom dan pelat, pembuatan jangkar pada setiap 6 lapis bata dan pembuatan kolom praktis pada dinding roboh serta perbaikan dan perkuatan pada rangka atap dan plafon. Material yang digunakan dalam pelaksanaan pekerjaan perbaikan dan perkuatan bangunan sederhana akibat gempa adalah beton, baja tulangan, batu bata, bahan kimia (epoxy) untuk mempercepat proses pekerjaan serta bahan-bahan umum lainnya yang sering dijumpai dalam pelaksanaan pekerjaan kontruksi Kata Kunci : Bangunan Sederhana (Non-Engineering), Perkuatan, Perbaikan  ABSTRACT Buildings are often damaged when the earthquake occurred is a simple building or non- building engineering . Non - engineered buildings are buildings that generally are residential buildings, houses, and others are mostly established by ordinary people without the help of expert structures. Final Project is made using the method of literature study , by collecting data from a variety of books , sources and journals related to the repair and retrofitting of buildings is simple due to the earthquak . Has many buildings damaged by the earthquake , so that the much needed development of repair methods and retrofitting structures to improve and strengthen the buildings damaged by the earthquake . Weak points of the building which is the failure points of the building due to earthquake load , among others : the join - column foundation , beam - column joint , and systems partner walls roof structure. Needed improvements to these elements to restore its original function as well as those elements in desperate need before the earthquake retrofitting and reinforcement detailing accurate . Repair and strengthening of structural elements of the building that have been developed include : repair cracked wall plaster reinforced with wire method , coating the structural elements of the building with a new layer of concrete ,reinforcement and the addition of a layer of concrete on the elements of beams, columns and plates , on the manufacture of each 6 -layer anchor brick and manufacture practical columns on the walls collapsed and the repair and reinforcement on the roof frame and the ceiling. Materials used in the execution of repair work and simple retrofitting buildings caused by the earthquake is concrete , reinforcing steel , bricks , chemicals ( epoxy ) to speed up the work process as well as other common ingredients that are often encountered in the implementation of the construction works.Keywords: building a simple (non - engineering), Rretrofitting, Repair


Sign in / Sign up

Export Citation Format

Share Document