Bitter Orange Fruit Flavonoids Dry Extract

2019 ◽  
Vol 102 (3) ◽  
pp. 720-725 ◽  
Author(s):  
Tao Li ◽  
Runtao Tian ◽  
Xinlan Yu ◽  
Lei Sun ◽  
Yi He ◽  
...  

Abstract Background: The use of HPTLC fingerprinting for the analysis of traditional Chinese medicines (TCMs) usually involves several image-processing steps. However, these image-processing steps are time consuming. Objective: We describe a new approach that applies artificial neural networks (ANN) directly to raw high-performance thin-layer chromatography HPTLC images. Methods: This approach combines image processing and chemometric modeling and was used to classify TCMs [dried tangerine eel (Chen Pi), green tangerine peel (Qing Pi), immature bitter orange fruit, and bitter orange fruit (Zhi Qiao)]. Images of the plates were processed with Chempattern and chemometric analysis including PCA, PLS-DA, and kNN were carried out all by ChemPattern. Results: The ANN model has an accuracy of 100.00% in all training, validation, and test sets, indicating excellent predictive performance and good generalization ability. The k-nearest neighbors (kNN) and partial least-square discriminant analysis (PLS-DA) models have accuracies of 90.91 and 72.73%, respectively, with the independent test set. The kNN model is also accurate, simple, and can be easily interpreted. Conclusions: HPTLC fingerprinting, combined with advanced image processing and proper chemometric algorithms, is a simple, efficient, and accurate method for the analysis of TCMs. Highlights: HPTLC fingerprints of four TCM crude drugs derived from Citrus spp. were compared by using image analysis algorithms. A new approach that applied ANN directly to raw HPTLC fingerprint images was described. Three image analysis algorithms based on kNN, PLS-DA and ANN are compared in the paper. The ANN model shows excellent predictive performance with high accuracy in test sets.


Molecules ◽  
2012 ◽  
Vol 17 (5) ◽  
pp. 5854-5869 ◽  
Author(s):  
Jéssica Sereno Peixoto ◽  
Jurandir Fernando Comar ◽  
Caroline Tessaro Moreira ◽  
Andréia Assunção Soares ◽  
Andrea Luiza de Oliveira ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1255
Author(s):  
Sofia C. Lourenço ◽  
Débora A. Campos ◽  
Ricardo Gómez-García ◽  
Manuela Pintado ◽  
M. Conceição Oliveira ◽  
...  

Pineapple peel still contains an important amount of phenolic compounds and vitamins with valuable antioxidant activity. In this way, the aim of this study was the recovery of the bioactive compounds from pineapple peel using environmentally friendly and low-cost techniques, envisaging their application in food products. From the solid-liquid extraction conditions tested, the one delivering an extract with higher total phenolic content and antioxidant capacity was a single extraction step with a solvent-pineapple peel ratio of 1:1 (w/w) for 25 min at ambient temperature, using ethanol-water (80–20%) as a solvent. The resulting extract revealed a total phenolic content value of 11.10 ± 0.01 mg gallic acid equivalent (GAE)/g dry extract, antioxidant activity of 91.79 ± 1.98 µmol Trolox/g dry extract by the DPPH method, and 174.50 ± 9.98 µmol Trolox/g dry extract by the FRAP method. The antioxidant rich extract was subjected to stabilization by the spray drying process at 150 °C of inlet air temperature using maltodextrin (5% w/w) as an encapsulating agent. The results showed that the antioxidant capacity of the encapsulated compounds was maintained after encapsulation. The loaded microparticles obtained, which consist of a bioactive powder, present a great potential to be incorporated in food products or to produce bioactive packaging systems.


Antioxidants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1105
Author(s):  
Fernanda Erpel ◽  
María Salomé Mariotti-Celis ◽  
Javier Parada ◽  
Franco Pedreschi ◽  
José Ricardo Pérez-Correa

Brown seaweed phlorotannins have shown the potential to promote several health benefits. Durvillaea incurvata and Lessonia spicata—species that are widely distributed in central and southern Chile—were investigated to obtain phlorotannin extracts with antioxidant and antihyperglycemic potential. The use of an environmentally friendly and food-grade glycerol-based pressurized hot liquid extraction (PHLE) process (15% v/v glycerol water) was assessed for the first time to obtain phlorotannins. Multiple effects were analyzed, including the effect of the species, harvesting area (Las Cruces and Niebla), and anatomical part (holdfast, stipe, and frond) on the extracts’ polyphenol content (TPC), antioxidant capacity (AC), and carbohydrate-hydrolyzing enzyme—α-glucosidase and α-amylase—inhibitory activity. Contaminants, such as mannitol, heavy metals (As, Cd, Pb, Hg, and Sn), and 5-hydroxymethylfurfural (HMF), were also determined. The anatomical part used demonstrated a significant impact on the extracts’ TPC and AC, with holdfasts showing the highest values (TPC: 95 ± 24 mg phloroglucinol equivalents/g dry extract; DPPH: 400 ± 140 μmol Trolox equivalents/g dry extract; ORAC: 560 ± 130 μmol TE/g dry extract). Accordingly, holdfast extracts presented the most potent α-glucosidase inhibition, with D. incurvata from Niebla showing an activity equivalent to fifteen times that of acarbose. Only one frond and stipe extract showed significant α-glucosidase inhibitory capacity. No α-amylase inhibition was found in any extract. Although no HMF was detected, potentially hazardous cadmium levels (over the French limit) and substantial mannitol concentrations—reaching up to 50% of the extract dry weight—were found in most seaweed samples and extracts. Therefore, further purification steps are suggested if food or pharmaceutical applications are intended for the seaweed PHLE extracts obtained in this study.


2021 ◽  
pp. 105719
Author(s):  
Maria Concetta Strano ◽  
Cristina Restuccia ◽  
Riccardo De Leo ◽  
Solidea Mangiameli ◽  
Elisa Bedin ◽  
...  

2021 ◽  
pp. 1-5
Author(s):  
Yanina G. Razuvaeva ◽  
Anyuta A. Toropova ◽  
Daniil N. Olennikov ◽  
Dmitrij V. Kharzheev

2021 ◽  
Vol 13 (14) ◽  
pp. 7945
Author(s):  
Matteo Vitale ◽  
María del Mar Barbero-Barrera ◽  
Santi Maria Cascone

More than 124 million tons of oranges are consumed in the world annually. Transformation of orange fruit generates a huge quantity of waste, largely composed of peels. Some attempts to reuse by-products derived from citrus waste have been proposed for energy production, nutrient source or pharmaceutical, food and cosmetic industries. However, their use in the building sector had not been researched. In this study, orange peels, in five different ratios, from 100% of wet peels to 75% and from 0% of dry peels to 25%, were submitted to a thermo-compression procedure. They were evaluated according to their physical (bulk density, water absorption, thickness swelling, surface soundness and thermal conductivity) and mechanical properties (bending strength and modulus of elasticity). The results showed that orange peels can be used as thermal insulation material. The addition of dried peels makes the structure of the board heterogeneous and thus increases its porosity and causes the loss of strength. Hence, the board with the sole use of wet peel, whose thermal conductivity is 0.065 W/mK while flexural strength is 0.09 MPa, is recommended.


Sign in / Sign up

Export Citation Format

Share Document