scholarly journals Accumulation efficiency of sunflower for lead and cadmium along with sustainable crop productivity under soil stress

2019 ◽  
Vol 11 (3) ◽  
pp. 636-644
Author(s):  
Vinothkumar Vadivel ◽  
Senthilvalavan Pitchamuthu

By nature coastal saline soils having several constraints in crop production in addition to that of heavy metals contamination deteriorate the soil productivity. To restore these contaminated soils, various remediation techniques in practices must be revamped. The present study was conducted to enhance the accumulation of heavy metals lead and cadmium in sunflower and improve the crop productivity using organic and inorganic soil amendments along with NPK fertilizers in completely randomized design. Soil samples were admitted to estimating soil physico chemical properties and DTPA extractable lead (Pb) and cadmium (Cd) and plant samples analyzed for DTPA extractable Pb and Cd concentrations under ICP-OES. The physico-chemical properties and DTPA extractable Pb and Cd concentrations were significantly influenced by amendments. Sunflower exhibited significant differences concerning accumulation of Pb and Cd against amendments tested along with higher biomass production. Higher shoot and root concentration of Pb(0.72,0.81 and 0.94,0.97 mg kg-1) and Cd (1.78, 2.32 and 0.35,0.32 mg kg-1)were recorded in the treatment RDF + EDTA, which was followed by RDF + Potassium humate and RDF + Zeolite application at 45 DAS and at harvest. Remediation efficiency of sunflower increased by application of RDF + EDTA through enhanced solubility of Pb and Cd in soil and thus increased Pb and Cd accumulation in root and shoot of sunflower. Whereas, the application of RDF+ FYM or press mud reduced the bioavailability of Pb and Cd in soil and thus restricted the accumulation of Pb and Cd by sunflower. Further, application of NPK fertilizers maintained the availability of nutrients and enhanced the yield of sunflower. The application of EDTA along with NPK fertilizer enhanced the bioaccumulation of lead and cadmium by sunflower without yield loss. Since, there is a possibility to cause leaching of HMs to ground water by EDTA. Hence, RDF plus Potassium humate or Zeolite can be recommended for lead and cadmium removal by sunflower in coastal saline soils with no loss in crop productivity.

2018 ◽  
Author(s):  
Jayalakshmi Mitnala

Sorghum and wheat are the premier food grain crops of the peninsular central India and in particular of Maharashtra. There has been a phenomenal increase in its production after mid sixties with the introduction of high yielding varieties. Increase in production was achieved through increase in area as well as productivity. Inputs like improved seeds, irrigation, fertilizers etc. has given a boost to productivity. Continuous addition of chemical fertilizers poses problems like toxicity due to high amounts of salts as residues of fertilizer and deterioration of the physico-chemical properties. Organic manure ameliorates this problem as organic matter helps in increasing adsorptive power of soil for cations and anions particularly phosphate and nitrate. Long term manuring and fertilizer experiments conducted in India showed declining trend in productivity even with the application of NPK fertilizers under modern intensive farming. Neither organic source alone nor inorganic fertilizers can achieve sustainability in crop production under intensive agriculture, where nutrient turnover in soil-plant system is much higher. However, their combined use appeared promising in enhanced crop productivity besides improving soil fertility.


2021 ◽  
Author(s):  
Victor Burgeon ◽  
Julien Fouché ◽  
Sarah Garré ◽  
Ramin Heidarian-Dehkordi ◽  
Gilles Colinet ◽  
...  

<p>The amendment of biochar to soils is often considered for its potential as a climate change mitigation and adaptation tool through agriculture. Its presence in tropical agroecosystems has been reported to positively impact soil productivity whilst successfully storing C on the short and long-term. In temperate systems, recent research showed limited to no effect on productivity following recent biochar addition to soils. Its long-term effects on productivity and nutrient cycling have, however, been overlooked yet are essential before the use of biochar can be generalized.</p><p>Our study was set up in a conventionally cropped field, containing relict charcoal kiln sites used as a model for century old biochar (CoBC, ~220 years old). These sites were compared to soils amended with recently pyrolyzed biochar (YBC) and biochar free soils (REF) to study nutrient dynamics in the soil-water-plant system. Our research focused on soil chemical properties, crop nutrient uptake and soil solution nutrient concentrations. Crop plant samples were collected over three consecutive land occupations (chicory, winter wheat and a cover crop) and soil solutions gathered through the use of suctions cups inserted in different horizons of the studied Luvisol throughout the field.</p><p>Our results showed that YBC mainly influenced the soil solution composition whereas CoBC mainly impacted the total and plant available soil nutrient content. In soils with YBC, our results showed lower nitrate and potassium concentrations in subsoil horizons, suggesting a decreased leaching, and higher phosphate concentrations in topsoil horizons. With time and the oxidation of biochar particles, our results reported higher total soil N, available K and Ca in the topsoil horizon when compared to REF, whereas available P was significantly smaller. Although significant changes occurred in terms of plant available nutrient contents and soil solution nutrient concentrations, this did not transcend in variations in crop productivity between soils for neither of the studied crops. Overall, our study highlights that young or aged biochar behave as two distinct products in terms of nutrient cycling in soils. As such the sustainability of these soils differ and their management must therefore evolve with time.</p>


Author(s):  
P.U. Singare ◽  
S.S. Dhabarde

The paper deals with monitoring of pollution arising due to agrochemicals and pesticides manufacturing industries located along the Dombivali industrial belt of Mumbai, India. The study was carried for the period of one year from June, 2012 to May, 2013 to study the level of toxic heavy metals and the physico-chemical properties of waste water effluents discharged from the above industries. The average concentration of Cu, Ni, Cr, Pb and Zn was found to be maximum of 29.86, 0.90, 1.16 and 1.19 ppm respectively in summer season, while average Fe concentration was maximum of 51.10 ppm in winter season. The average pH value of the effluent was found to be maximum of 12.95 in summer season, while average conductivity value was maximum of 21085 µmhos/cm in rainy season. The majority of physco-chemical parameters like alkalinity, hardness, salinity, chloride, cyanide, phosphate, total solid, BOD and COD content were found to be maximum in summer season having the average values of 1918, 186, 4, 11.20, 0.07, 81, 6391, 685 and 2556 ppm respectively. The average DO content was found to be low of 4.5 ppm in winter season. It was observed that the concentration level of majority of the toxic heavy metals and physico-chemical properties were above the tolerable limit set for inland surface water. The results of present study indicates that the existing situation if mishandled can cause irreparable ecological harm in the long term well masked by short term economic prosperity due to extensive industrial growth


2019 ◽  
Vol 9 (2) ◽  
pp. 178
Author(s):  
I GUSTI PUTU RATNA ADI ◽  
I NYOMAN PUJA

Increased Rice Crop Productivity Through Compost and NPK Fertilization. The aims of this research was to study response of compost and NPK fertilizers to the soil chemical properties and rice yield. The method used was a factorial Randomized Block Design consisting of two factors. The first factor was compost Fertilizer (B) consists of 2 levels, namely: B0 = Without compost fertilizer and B1 = 5 ton compost fertilizer ha-1. The second factors was NPK national recomendation (P) consists of 3 levels, namely: P1 = 50% of NPK recommendation, P2 = 100% of NPK recommendation and P3 = 150% of NPK recommendation. The results showed that the treatment of compost and NPK fertilizers gave no significant effect on tillers number clumb-1 and dry straw weight/m2 , but gave a significant effect on N, P, K and dry grain weight/m2. The combination of 5 tons of compost/ha and 150% of NPK recommendation can produce N-total, P-available level, K-available and dry grain weight per m2 respectively 0.35%, 13.79 ppm, 355, 21 ppm and 0.96 kg and significantly higher than the combination of 50% NPK recommendation and without compost, which were 0.26%, 8.21 ppm, 236.10 ppm and 0.69 kg respectively.


Author(s):  
CT Nelson ◽  
GT Amangabara ◽  
CO Owuama ◽  
CN Nzeh ◽  
CN Uyo

Open dumpsite is the most common way to eliminate solid urban wastes in this part of the world. An important problem associated to landfills and open dumpsite is the production of leachates. The leachates from these dumpsites have many toxic substances, which may adversely affect the environmental health. Thus in order to have a better management of characteristics of Ihiagwa-Nekede waste dump leachates, representative leachate samples were collected and analyzed for Physico-chemical properties and levels of heavy metals in them. Results indicate pH7.38, temperature 28.30 ℃ - 28.40℃, total dissolved solid 124.01mg/l-125.45mg/l, magnesium hardness 4.40mg/l-7.32mg/l, sulphate 3.60mg/l-3.70mg/l, and nitrate 27.00mg/l-27.60mg/l. Other parameters indicated as follows Conductivity1910𝜇𝑠/𝑐𝑚-1930.00 𝜇𝑠/𝑐𝑚, total chloride 891.72mg/l-891.74mg/l, carbonate 1708.00mg/l-1904.00mg/l, Ammonia 9.39mg/l-9.40mg/l, calcium hardness 373.17mg/l-375.61mg/l, total solid 2423.00mg/l-2454.00mg/l, phosphate 13.52mg/l-13.54mg/l. The heavy metal: cyanide 2.25mg/l-2.33mg/l, zinc 18.08mg/l-18.38mg/l, copper 19.90mg/l20.48mg/l, iron10.67mg/l-10.82mg/l, lead 1.27mg/l-1.41mg/l, and manganese 3.00mg/l-3.61mg/l, all these exceeded the WHO standards. The obtained results showed that the landfill leachates are characterized by high concentrations of heavy metals and other disease causing elements and therefore require urgent treatment to forestall the contamination of groundwater system and the nearby Otamiri River.


2003 ◽  
Vol 49 (2) ◽  
pp. 163-170 ◽  
Author(s):  
A Mitra ◽  
P Bhattacharyya ◽  
K Chakrabarti ◽  
DJ Chattopadhyay ◽  
A Chakraborty

2006 ◽  
Vol 54 (6-7) ◽  
pp. 307-314 ◽  
Author(s):  
B. Béchet ◽  
B. Durin ◽  
M. Legret ◽  
P. Le Cloirec

The thickness of non-saturated zone and physico-chemical conditions are important parameters to assess the impact of infiltration ponds on water resources with respect to heavy metals transfer. As changes in physico-chemical parameters of solutions have a strong impact on the mobility of colloidal phases in sediments and soils, the colloidal facilitated transfer of heavy metals has to be investigated. Therefore, this study focuses on the characterization of runoff, surface and interstitial waters in a retention/infiltration pond collecting runoff waters of a bridge near Nantes. Physico-chemical parameters and chemical analyses were performed on the waters during about one year. The separation of dissolved and colloidal fractions was carried out by filtration and ultrafiltration for one sample of surface and interstitial waters. Until now, the runoff waters were only filtered at 0.45 μm. The comparison of physico-chemical data shows that the minor variations of runoff water parameters are mitigated in basin and in soils but strong variations impact the composition of interstitial waters. High concentrations of zinc, copper and still of lead are measured in runoff. Lead and cadmium seem to be associated to colloidal and particulate fractions while zinc, copper, nickel and chromium are distributed in all fractions.


2021 ◽  
Vol 4 (46) ◽  
pp. 10-10
Author(s):  
Alexander Saakian ◽  
◽  

The article presents the results of long-term agroecological monitoring of the state of Russian land resources: the dynamics of changes in agrochemical and physico-chemical indicators, the content of organic matter and elements of mineral nutrition of plants in soils; crop productivity; contamination of soils and products with residual amounts of pesticides, oil and petroleum products, heavy metals, nitrates, radionuclides; the problems of erosion and reclamation of agricultural land are highlighted. Ключевые слова: AGROECOLOGICAL MONITORING, HUMUS, MOBILE PHOSPHORUS, EXCHANGE POTASSIUM, ACIDITY, CHEMICAL RECLAMATION, LIMING, PHOSPHORIZATION, GYPSUM, PLANT PROTECTION PRODUCTS, YIELD, FERTILIZERS, PESTICIDE RESIDUES, OIL AND PETROLEUM PRODUCTS, HEAVY METALS, NITRATES, WATER AND WIND EROSION OF SOILS, LAND RECLAMATION


Sign in / Sign up

Export Citation Format

Share Document