scholarly journals Manufacturing and assessing new samplers to measure wind soil erosion

2021 ◽  
Vol 13 (4) ◽  
pp. 1390-1406
Author(s):  
Adil Abdelsamia Meselhy ◽  
Omnia Mohamed Wassif

Wind soil erosion is one of the most important causes of soil degradation that impede the process of sustainable agricultural development. The first step to mitigating wind erosion hazards is to find an effective and accurate way to assess its severity. Therefore, the main objective of this research was to raise and evaluate the efficiency of the new four traps to measure eroded soil, Fixed Distance trap (FD), Fixed Point trap (FP), Rotary Distance trap (RD) and Rotary Point trap (RP). The study traps RP and FP compared with the Big Spring Number Eight trap (BSNE) (traditional trap) and the traps RD and FD compared with the Bagnold trap (traditional trap). The results indicated that the order of study traps in terms of soil collection efficiency and soil retention efficiency were RD>FD>Bagnold>RP>FP>BSNE and FP>RP>RD>FD>Bagnold>BSNE, respectively. Results proved that the best traps in collecting eroded soil were RP trap followed by FP trap, compared to BSNE trap. Also, the best traps in collecting eroded soil were RD trap, followed by FD trap, compared to the Bagnold trap. The most important results showed that the relative efficiency of RP and FP traps were 181% and 159%, respectively, compared to BSNE and the relative efficiency of RD and FD traps were 186% and 172%, respectively, compared to the Bagnold trap. The study proved high accuracy of new traps in measuring soil eroded material, separating soil particles according to their size directly inside traps and determining the direction of the wind compared to traditional traps.   

Agriculture ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1124
Author(s):  
Salman A. H. Selmy ◽  
Salah H. Abd Al-Aziz ◽  
Raimundo Jiménez-Ballesta ◽  
Francisco Jesús García-Navarro ◽  
Mohamed E. Fadl

Soil erosion modeling is becoming more significant in the development and implementation of soil management and conservation policies. For a better understanding of the geographical distribution of soil erosion, spatial-based models of soil erosion are required. The current study proposed a spatial-based model that integrated geographic information systems (GIS) techniques with both the universal soil loss equation (USLE) model and the Index of Land Susceptibility to Wind Erosion (ILSWE). The proposed Spatial Soil Loss Model (SSLM) was designed to generate the potential soil erosion maps based on water erosion and wind erosion by integrating factors of the USLE and ILSWE models into the GIS environment. Hence, the main objective of this study is to predict, quantify, and assess the soil erosion hazards using the SSLM in the Dakhla Oasis as a case study. The water soil loss values were computed by overlaying the values of five factors: the rainfall factor (R-Factor), soil erodibility (K-Factor), topography (LS-Factor), crop types (C-Factor), and conservation practice (P-Factor). The severity of wind-driven soil loss was calculated by overlaying the values of five factors: climatic erosivity (CE-Factor), soil erodibility (E-Factor), soil crust (SC-Factor), vegetation cover (VC-Factor), and surface roughness (SR-Factor). The proposed model was statistically validated by comparing its outputs to the results of USLE and ILSWE models. Soil loss values based on USLE and SSLM varied from 0.26 to 3.51 t ha−1 yr−1 with an average of 1.30 t ha−1 yr−1 and from 0.26 to 3.09 t ha−1 yr−1 with a mean of 1.33 t ha−1 yr−1, respectively. As a result, and according to the assessment of both the USLE and the SSLM, one soil erosion class, the very low class (<6.7 t ha−1 yr−1), has been reported to be the prevalent erosion class in the study area. These findings indicate that the Dakhla Oasis is slightly eroded and more tolerable against water erosion factors under current management conditions. Furthermore, the study area was classified into four classes of wind erosion severity: very slight, slight, moderate, and high, representing 1.0%, 25.2%, 41.5%, and 32.3% of the total study area, respectively, based on the ILSWE model and 0.9%, 25.4%, 43.9%, and 29.9%, respectively, according to the SSLM. Consequently, the Dakhla Oasis is qualified as a promising area for sustainable agriculture when appropriate management is applied. The USLE and ILSWE model rates had a strong positive correlation (r = 0.97 and 0.98, respectively), with the SSLM rates, as well as a strong relationship based on the average linear regression (R2 = 0.94 and 0.97, respectively). The present study is an attempt to adopt a spatial-based model to compute and map the potential soil erosion. It also pointed out that designing soil erosion spatial models using available data sources and the integration of USLE and ILSWE with GIS techniques is a viable option for calculating soil loss rates. Therefore, the proposed soil erosion spatial model is fit for calculating and assessing soil loss rates under this study and is valid for use in other studies under arid regions with the same conditions.


2018 ◽  
Vol 10 (8) ◽  
pp. 2699 ◽  
Author(s):  
Tian Dong ◽  
Weihua Xu ◽  
Hua Zheng ◽  
Yang Xiao ◽  
Lingqiao Kong ◽  
...  

Worldwide, most ecosystem services have declined. However, the theoretical and analytical frameworks for the ecological risk assessment of ecosystem services are still lacking. Here a framework for the risk assessment of ecosystem services was developed based on the formation, changes, risk, and management of ecosystem services. The framework was tested in Ganzi, the upstream area of the Yangtze River Basin, for the regional ecological warning of ecosystem services. Ecosystem services in the form of soil retention and sandstorm prevention and ecological risks including soil and wind erosion were modelled. The results showed that with the increase in area and quality of natural vegetation (forest and grassland), the soil retention service and sandstorm prevention service increased by 66.92% and 8.59% between 2000 and 2015, respectively. Correspondingly, the ecological risk of soil erosion decreased by 8.8%, and wind erosion remained stable. Despite the negative impacts from agricultural development on sandstorm prevention, the increase in vegetation and improvement in ecological quality led to a decrease in the ecological risks of soil erosion and sandstorm erosion by improvement of ecosystem services. This research provides a new perspective for ecological risk assessment, as well as direct management information on ecological risks, by incorporating ecosystem services.


2022 ◽  
Vol 14 (2) ◽  
pp. 348
Author(s):  
Yashon O. Ouma ◽  
Lone Lottering ◽  
Ryutaro Tateishi

This study presents a remote sensing-based index for the prediction of soil erosion susceptibility within railway corridors. The empirically derived index, Normalized Difference Railway Erosivity Index (NDReLI), is based on the Landsat-8 SWIR spectral reflectances and takes into account the bare soil and vegetation reflectances especially in semi-arid environments. For the case study of the Botswana Railway Corridor (BRC), the NDReLI results are compared with the RUSLE and the Soil Degradation Index (SDI). The RUSLE model showed that within the BRC, the mean annual soil loss index was at 0.139 ton ha−1 year−1, and only about 1% of the corridor area is susceptible to high (1.423–3.053 ton ha−1 year−1) and very high (3.053–5.854 ton ha−1 year−1) soil loss, while SDI estimated 19.4% of the railway corridor as vulnerable to soil degradation. NDReLI results based on SWIR1 (1.57–1.65 μm) predicted the most vulnerable areas, with a very high erosivity index (0.36–0.95), while SWIR2 (2.11–2.29 μm) predicted the same regions at a high erosivity index (0.13–0.36). From empirical validation using previous soil erosion events within the BRC, the proposed NDReLI performed better that the RUSLE and SDI models in the prediction of the spatial locations and extents of susceptibility to soil erosion within the BRC.


2015 ◽  
Vol 16 (1-2) ◽  
pp. 102-106
Author(s):  
A. P. Travleyev ◽  
V. A. Gorban

At the present time the great part of soils is exposed to various negative processes. One of the basic processes that lead to the degradation of soils in Ukraine is the erosion. According to the recent data, water and wind erosion covers 13.9 million hectares; it is about 33 % of the total arable land in the country. On this basis, the greater relevance belongs to the scientific studies displaying the features of negative phenomena of our soil, and, most importantly, the ways of solving of these urgent problems on the soil cover of Ukraine. The monograph «Soil erosion in Ukraine: the evolution of theory and practice» of such famous scientists in the field of Soil Erosion Science as Voloshchuk M. D., Petrenko N. I. and Yatsenko S. V. is one of such fundamental works. In the present monograph, considerable attention is paid to the periodization of the formation and development of the doctrine of soil erosion in Ukraine. The authors identify six basic stages of formation of the national Soil Erosion Science. The paper discusses the characteristic features of isolation of Soil Erosion Science as an independent scientific direction and a self-discipline, which are based on the works of such renowned scientists as P. S. Tregubov, M. N. Zaslavsky and G. I. Shvebs. A significant place in the monograph is devoted to the characteristics of the scientific centers of Ukraine, in which the Soil Erosion Science has been developed. These centers are distinguished by leading scientists, under the leadership of whom, the erosion processes have been studied. The authors of the monograph provides four main scientific centers of the country in the field of Soil Erosion Science development: National Scientific Centre «Institute of Agriculture of the National Academy of Agricultural Sciences» (central region), National Scientific Center «Institute for Soil Science and Agrochemistry Research named after O. N. Sokolovsky», Scientific-Technical Center «Fertility» (Kharkiv region), Odessa I. I. Mechnikov National University (south region), Lviv National Agrarian University, Institute of Ecology of the Carpathians of National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv and others (west region). In addition to considering the features of the listed centers, in the work there is a presentation of a brief description of the project, research institutes, agricultural and agroforestry research stations that are active in a scientific work in relation to soil erosion processes. In the work, there are also the historical aspects and mechanisms for the further development of wind erosion researches. Considerable attention the authors of the monograph pay to the analysis of the current state, challenges and prospects of solving the problem on protecting the soil from erosion. The main problem of the country's soil, which is the cause of widespread erosion, is a very high agricultural development of the territory, more than half of which falls onto an arable land. At the end of the monograph, there are a large number of photos, provided by Professor M. D. Voloshchuk, which recorded various aspects of soil erosion manifestations, as well as the ways of its overcoming in the conditions of forest-steppe and steppe zones in Ukraine and on the territory of Moldova. The reviewed monograph is certainly a very relevant and timely generalizing scientific research that will be useful in the theoretical and practical use of students, academic staff of the natural and agricultural higher education institutions, research organizations.


2021 ◽  
Author(s):  
Morteza Akbari ◽  
Ehsan Neamatollahi ◽  
Hadi Memarian ◽  
Mohammad Alizadeh Noughani

Abstract Floods cause great damage to ecosystems and are among the main agents of soil erosion. Given the importance of soils for the functioning of ecosystems and development and improvement of bio-economic conditions, the risk and rate of soil erosion was assessed using the RUSLE model in Iran’s Lorestan province before and after a period of major floods in late 2018 and early 2019. Furthermore, soil erosion was calculated for current and future conditions based on the Global Soil Erosion Modeling Database (GloSEM). The results showed that agricultural development and land use change are the main causes of land degradation in the southern and central parts of the study area. The impact of floods was also significant since our evaluations showed that soil erosion increased from 4.12 t ha-1 yr-1 before the floods to 10.93 t ha-1 yr-1 afterwards. Field surveying using 64 ground control points determined that erodibility varies from 0.17 to 0.49% in the study area. Orchards, farms, rangelands and forests with moderate or low vegetation cover were the most vulnerable land uses to soil erosion. The GloSEM modeling results revealed that climate change is the main cause of change in the rate of soil erosion. Combined land use change-climate change simulation showed that soil erosion will increase considerably in the future under SSP1-RCP2.6, SSP2-RCP4.5, and SSP5-RCP8.5 scenarios. In the study area, both natural factors, i.e. climate change and human factors such as agricultural development, population growth, and overgrazing are the main drivers of soil erosion.


2013 ◽  
Vol 37 (6) ◽  
pp. 1431-1440 ◽  
Author(s):  
Tiago Santos Telles ◽  
Sonia Carmela Falci Dechen ◽  
Maria de Fátima Guimarães

The problem of soil erosion in Brazil has been a focus of agricultural scientific research since the 19th century. The aim of this study was to provide a historical overview of the institutional landmarks which gave rise to the first studies in soil erosion and established the foundations of agricultural research in Brazil. The 19th century and beginning of the 20th century saw the founding of a series of institutions in Brazil, such as Botanical Gardens, executive institutions, research institutes, experimental stations, educational institutions of agricultural sciences, as well as the creation and diversification of scientific journals. These entities, each in its own way, served to foster soil erosion research in Brazil. During the Imperial period (1808-1889), discussions focused on soil degradation and conserving the fertility of agricultural land. During the First Republic (1889-1930), with the founding of various educational institutions and consolidation of research on soil degradation conducted by the Agronomic Institute of Campinas in the State of São Paulo, studies focused on soil depletion, identification of the major factors causing soil erosion and the measures necessary to control it. During the New State period (1930-1945), many soil conservation practices were developed and disseminated to combat erosion and field trials were set up, mainly to measure soil and water losses induced by hydric erosion. During the Brazilian New Republic (1945-1964), experiments were conducted throughout Brazil, consolidating soil and water conservation as one of the main areas of Soil Science in Brazil. This was followed by scientific conferences on erosion and the institutionalization of post-graduate studies. During the Military Regime (1964-1985), many research and educational institutions were founded, experimental studies intensified, and coincidently, soil erosion reached alarming levels which led to the development of the no-tillage system.


2010 ◽  
Vol 56 (No. 2) ◽  
pp. 87-97 ◽  
Author(s):  
X.B. Liu ◽  
X.Y. Zhang ◽  
Y.X. Wang ◽  
Y.Y. Sui ◽  
S.L. Zhang ◽  
...  

Soil degradation that results from erosion, losses of organic matter and nutrients, or soil compaction are of great concern in every agricultural region of the world. The control of soil erosion and loss of organic matter has been proposed as critical to agricultural and environmental sustainability of Northeast China. This region is bread basket of China where the fertile and productive soils, Mollisols (also called Black soils), are primarily distributed. In this paper, we introduce the importance of Northeast China’s grain production to China, and describe the changes of sown acreage and grain production in past decades. This paper also summarizes the distribution, area and intensity of water erosion, changes in the number of gullies and gully density, thickness of top soil layer, soil organic matter content, bulk density, field water holding capacity, and infiltration rates; the number of soil microorganism and main enzyme activities from soil erosion in the region are also summarized. The moderately and severely water-eroded area accounted for 31.4% and 7.9% of the total, and annual declining rate is 1.8%. Erosion rate is 1.24–2.41 mm/year, and soil loss in 1°, 5° and 15° sloping farmlands is 3 t/ha/year, 78 t/ha/year and 220.5 t/ha/year, respectively. SOC content of uncultivated soil was nearly twice that of soil with a 50-year cultivation history, and the average annual declining rate of soil organic matter was 0.5%. Proper adoption of crop rotation can increase or maintain the quantity and quality of soil organic matter, and improve soil chemical and physical properties. Proposed strategies for erosion control, in particular how tillage management, terraces and strip cultivation, or soil amendments contribute to maintain or restore the productivity of severely eroded farmland, are discussed in the context of agricultural sustainability with an emphasis on the Chinese Mollisols.


Geosciences ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 478 ◽  
Author(s):  
Miriam Marzen ◽  
Thomas Iserloh ◽  
Wolfgang Fister ◽  
Manuel Seeger ◽  
Jesus Rodrigo-Comino ◽  
...  

The relative impact of water and wind on total erosion was investigated by means of an experimental-empirical study. Wind erosion and water erosion were measured at five different sites: (1) Mediterranean fallow, (2) Mediterranean orchard, (3) wheat field, (4) vineyard and (5) sand substrate. Mean erosion rates ranged from 1.55 to 618 g·m−2·h−1 for wind and from 0.09 to 133.90 g·m−2·h−1 for rain eroded material over all tested sites. Percentages (%) of eroded sediment for wind and rain, respectively, were found to be 2:98 on Mediterranean fallow, 11:89 on Mediterranean orchard, 3:97 on wheat field, 98:2 on vineyard and 99:1 on sand substrate. For the special case of soil surface crust destroyed by goat trampling, the measured values emphasize a strong potential impact of herding on total soil erosion. All sites produced erosion by wind and rain, and relations show that both erosive forces may have an impact on total soil erosion depending on site characteristics. The results indicate a strong need to focus on both wind and water erosion particularly concerning soils and substrates in vulnerable environments. Measured rates show a general potential erosion depending on recent developments of land use and climate change and may raise awareness of scientist, farmers and decision makers about potential impact of both erosive forces. Knowledge about exact relationship is key for an adapted land use management, which has great potential to mitigate degradation processes related to climate change.


Agronomy ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 257 ◽  
Author(s):  
Agata Novara ◽  
Giovanni Stallone ◽  
Artemio Cerdà ◽  
Luciano Gristina

Soil erosion has been considered a threat for semi-arid lands due to the removal of solid materials by water and wind. Although water erosion is currently considered the most important process of soil degradation, a growing interest has been drawn to the impact of soil tillage. Although numerous studies on tillage erosion have been carried out on arable land using a moldboard plow, a chisel, and a tandem disc for different crops, there are no studies on the effect of shallow tillage on soil redistribution in vineyards. The aim of this work was to evaluate the soil tillage erosion rate in a vineyard using a 13C natural abundance tracer. A strip of soil (C3-C soil) was removed, mixed with C4-C tracer, and replaced. After the installation of the strip, tillage (upslope in one inter-row and downslope in the other inter-row) was performed with a cultivator and soil was collected along the slope with an interval of 0.2 m from the C4-C strip. Soil organic carbon and δ13C were measured and the total mass of translocated soil (T) soil was calculated. The net effect of tillage after two consecutive operations (downslope and upslope tillage) was a T of 49.3 ± 4.2 kg m−1. The estimated annual erosion rate due to tillage in the studied vineyard was 9.5 ± 1.2 Mg ha−1year−1. The contribution of the soil tillage erosion rate was compared with that of water erosion in the same vineyard, and we conclude that tillage is a threat to soil degradation.


Sign in / Sign up

Export Citation Format

Share Document