Productivity, economics and soil fertility of soybean - safflower croppingsystem in response to nutrient management practices

Author(s):  
P. Padmavathi ◽  
I. Y.L.N Murthy ◽  
M. Suresh

A field experiment was conducted to study the effect of nutrient management practices on the performance of soybean - safflower sequence in Vertisols. The safflower equivalent yield (2418 kg/ha-1); gross returns (Rs. 53196/ha-1); net returns (Rs 33734/ha-1) and B:C ratio (2.8) were significantly superior either with the application of NPK to the system + 5 t FYM/ha to safflower; or NPK to the system + soybean residues to safflower; or NPK to the system + both crop residues. Similar trend was also observed with respect to soil health indicators viz., soil respiration (108 mg C/g soil/10 days), microbial biomass C (284 mg C/g soil), microbial biomass N (41.9 mg N/g soil), mineral N (13.8 mg N/g soil) and net N mineralization (5.4 mg N/g soil/ 10 days). Significant improvement was observed in terms of PGPR and Trichoderma sp were found when NPK + crop residues were applied to the system.

1992 ◽  
Vol 43 (5) ◽  
pp. 1197
Author(s):  
PR Grace ◽  
IC MacRae ◽  
RJK Myers

Microbiological and chemical assays were performed on clay soils from woodland (Acacia harpophylla-Casuarina cristata), grassland (Panicurn maximum var trichoglume-Chloris gayana) and cropland (Vigna mungo) in the brigalow region of Central Queensland. Over a 15 month period, the microbial biomass C in the top 3.5 cm of native brigalow woodland soil was on average 3630 8g C g-l, 50% more than an associated perennial pasture and over 400% more than an annually cropped soil. Microbial biomass N (575 8g N g-l) in woodland soil was on average 41% and 270% higher than in pasture and cropped soils respectively and highly correlated with seasonal soil moisture content. Viable counts of bacteria were consistently lower (average 69.2%) in the 0-3.5 cm and 3.5-7.5 cm strata of woodland soil compared with pasture and annual crop sites. Soil NO-3- N levels increased two fold in the upper 3.5 cm of the woodland site during low rainfall periods. This increase may be attributed to a more efficient distribution of mineral N mediated by the increased presence of a fungal population in this community. Leaching may also play a significant role in the distribution of plant available N in the brigalow region as suggested by the inverse relationship N = 54.11-0.67 R (P<0.01), where N is soil NO-3-N (8g N g-l) and R is rainfall in the preceding 3 month period (mm month-1).


Author(s):  
George O. Odugbenro ◽  
Zhihua Liu ◽  
Yankun Sun

An incubation study was conducted to determine the influence of biochar and corn straw on CO2-C emission, soil organic C, microbial biomass C and N, total N, and mineral N (NH4+-N and NO3--N) in a clay loam soil. Six treatments viz., CK (Control); S (Soil + 1% straw); B1 (Soil + 0.5% biochar); B2 (Soil + 2% biochar); SB1 (Soil + 1% straw + 0.5% biochar); SB2 (Soil + 1% straw + 2% biochar) were tested with three replications. Results showed that straw addition to soil with or without biochar increased CO2-C emission while sole-biochar addition (2%) reduced it. Straw and biochar also increased the soil microbial biomass C and N but greatest increase in microbial biomass N (111.9 µg g-1) was recorded by biochar-straw combination. SOC and total N significantly increased following biochar and straw additions which suggest that organic amendments can improve soil chemical properties. Additionally, for soil mineral N, biochar reduced NH4+-N and NO3--N concentrations while straw increased NH4+-N concentration but greatly reduced that of NO3--N.


Agriculture ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 580
Author(s):  
Ellie M. Andrews ◽  
Sire Kassama ◽  
Evie E. Smith ◽  
Patrick H. Brown ◽  
Sat Darshan S. Khalsa

Ecosystem-based approaches to nutrient management are needed to satisfy crop nutrient requirements while minimizing environmental impacts of fertilizer use. Applying crop residues as soil amendments can provide essential crop nutrient inputs from organic sources while improving nutrient retention, soil health, water conservation, and crop performance. Tree crop hulls, husks, and shells have been found to contain high concentrations of potassium across species including almond, cacao, coffee, pecan, and hazelnut. The objective of this review is to characterize organic sources of potassium focusing on lignocellulosic pericarps and discuss reported effects of surface application on potassium cycling, water dynamics, soil functionality, and crop yield. Research indicates potassium ions solubilize readily from plant material into soil solution due to potassium’s high mobility as a predominately unbound monatomic cation in plant tissues. Studies evaluating tree crop nutshells, field crop residues, and forest ecosystem litter layers indicate this process of potassium release is driven primarily by water and is not strongly limited by decomposition. Research suggests orchard floor management practices can be tailored to maximize the soil and plant benefits provided by this practice. Contextual factors influencing practice adoption and areas for future study are discussed.


Agronomy ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1386
Author(s):  
Michael Stotter ◽  
Florian Wichern ◽  
Ralf Pude ◽  
Martin Hamer

Cultivation of Miscanthus x giganteus L. (Mis) with annual harvest of biomass could provide an additional C source for farmers. To test the potential of Mis-C for immobilizing inorganic N from slurry or manure and as a C source for soil organic matter build-up in comparison to wheat (Triticum aestivum L.) straw (WS), a greenhouse experiment was performed. Pot experiments with ryegrass (Lolium perenne L.) were set up to investigate the N dynamics of two organic fertilisers based on Mis at Campus Klein-Altendorf, Germany. The two fertilisers, a mixture of cattle slurry and Mis as well as cattle manure from Mis-bedding material resulted in a slightly higher N immobilisation. Especially at the 1st and 2nd harvest, they were partly significantly different compared with the WS treatments. The fertilisers based on Mis resulted in a slightly higher microbial biomass C and microbial biomass N and thus can be identified as an additional C source to prevent nitrogen losses and for the build-up of soil organic matter (SOM) in the long-term.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 395
Author(s):  
Alex J. Lindsey ◽  
Adam W. Thoms ◽  
Marshall D. McDaniel ◽  
Nick E. Christians

Soil health and sustainable management practices have garnered much interest within the turfgrass industry. Among the many practices that enhance soil health and sustainability are applying soil additives to enhance soil biological activity and reducing nitrogen (N) inputs—complimentary practices. A two-year study was conducted to investigate if reduced N fertilizer rates applied with humic substances could provide comparable turfgrass quality as full N rates, and whether humic fertilizers would increase biological aspects of soil health (i.e., microbial biomass and activity). Treatments included synthetic fertilizer with black gypsum (SFBG), poly-coated humic-coated urea (PCHCU; two rates), urea + humic dispersing granules (HDG; two rates), urea, stabilized nitrogen, HDG, and a nontreated control. Reduced rates of N with humic substances maintained turfgrass quality and cover, and reduced clipping biomass compared to full N rates. There were no differences in soil physical and chemical properties besides soil sulfur (S) concentration. SFBG resulted in the highest soil S concentration. Fertilizer treatments had minimal effect on microbial biomass and other plant-available nutrients. However, PCHCU (full rate) increased potentially mineralizable carbon (PMC) and N (PMN) by 68% and 59%, respectively, compared to the nontreated control. Meanwhile SFBG and stabilized nitrogen also increased PMC and PMN by 77% and 50%, and 65% and 59%, respectively. Overall, applications of reduced N fertilizer rates with the addition of humic substances could be incorporated into a more sustainable and environmentally friendly turfgrass fertilizer program.


1984 ◽  
Vol 64 (3) ◽  
pp. 355-367 ◽  
Author(s):  
V. O. BIEDERBECK ◽  
C. A. CAMPBELL ◽  
R. P. ZENTNER

Effects of rotation length, fallow-substitute crops, and N and P fertilizer on some physical and biological properties of a Brown Chernozemic loam in southwestern Saskatchewan were determined over a period of 16 yr. After 12 yr, the erodible fraction in the top 15 cm of soil (i.e., < 0.84 mm) was inversely related to trash conserved and thus rotation length. Soil organic N (in the top 15 cm) increased from 0.18 to 0.20% in continuous-type rotations receiving an average 32 kg N∙ha−1∙yr−1 and adequate P, but it did not increase in continuous wheat receiving P only, nor in fallow rotations, except the one that included fall rye (Secale cereale L.). This N increase was credited partly to fertilizer and partly to more efficient use and cycling of subsoil NO3-N via plant roots and crop residues. After 10 yr, well-fertilized continuous-type rotations had a 13% greater C content than fallow rotations and continuous wheat receiving only P. In the top 7.5 cm of soil under the four rotations examined in detail, bacterial numbers were lowest in fallow-wheat, intermediate in fallow-wheat-wheat, higher in continuous wheat receiving N and P, and highest in continuous wheat receiving only P. Similarly, microbial biomass C in these four rotations was 180, 226, 217 and 357 kg∙ha−1; biomass N was 52, 65, 54 and 72 kg∙ha−1; and biomass C/N ratios were 3.4, 3.5, 4.1 and 5.1, respectively. Differences in biomass C/N, respiration rates and numbers of bacteria, actinomycetes and yeasts indicated both quantitative and qualitative microbial changes and reflected increasing rotation length and differences in fertility. Potentially mineralizable N (No) was 192 kg∙ha−1 for adequately fertilized continuous wheat, and exceeded No in fallow-wheat by 45%, in fallow-wheat-wheat by 17% and in continuous wheat receiving only P by 25%. The latter rotation contained a large but fairly inactive microbial population. We concluded that land degradation caused by frequent summerfallowing can be arrested and the decline in amount and quality of organic matter reversed by use of available agronomic technology. Key words: Microbial biomass, microbial activity, potentially mineralizable N, respiration, soil erodibility


2015 ◽  
Vol 4 (3) ◽  
pp. 116 ◽  
Author(s):  
Lynette K. Abbott ◽  
David A. C. Manning

<p>Soil health is dependent upon complex bio-physical and bio-chemical processes which interact in space and time. Microrganisms and fauna in soil comprise highly diverse and dynamic communities that contribute, over either short or long time frames, to the transformation of geological minerals and release of essential nutrients for plant growth. Certified organic soil management practices generally restrict the use of chemically-processed highly soluble plant nutrients, leading to dependence on nutrient sources that require microbial transformation of poorly soluble geological minerals. Consequently, slow release of nutrients controls their rate of uptake by plants and associated plant physiological processes. Microbial and faunal interactions influence soil structure at various scales, within and between crystalline mineral grains, creating complex soil pore networks that further influence soil function, including the nutrient release and uptake by roots. The incorporation of organic matter into soil, as either manure or compost in organic farming systems is controlled to avoid excessive release of soluble nutrients such as nitrogen and phosphorus, while simultaneously contributing an essential source of carbon for growth and activity of soil organisms. The interdependence of many soil physical and chemical processes contributing to soil health is strongly linked to activities of the organisms living in soil as well as to root structure and function. Capitalizing on these contributions to soil health cannot be achieved without holistic, multiscale approaches to nutrient management, an understanding of interactions between carbon pools, mineral complexes and soil mineralogy, and detailed examination of farm nutrient budgets.</p>


2021 ◽  
Vol 107 ◽  
pp. 103362
Author(s):  
Umme Aminun Naher ◽  
Md Mozammel Haque ◽  
Faruk Hossain Khan ◽  
Md Imran Ullah Sarkar ◽  
Tahmid Hossain Ansari ◽  
...  

2011 ◽  
Vol 1 (4) ◽  
pp. 202-207
Author(s):  
N. Ewusi‐Mensah ◽  
V. Logah ◽  
J. O. Fening

This paper reports the short Ã¢â‚¬Â term effects of organic and inorganic fertilizerapplications on the culturable resident bacterial and fungal properties of aFerric Acrisol in the semi Ã¢â‚¬Âdeciduous forest zone of Ghana after three continuouscropping seasons. The treatments were two compost types (i.e. 1:1compost comprising 1 part made up of Chromolaena, Stylosanthes, maizestover mixture and 1 part of cattle manure, 2:1 compost comprising 2 partsof Chromolaena, Stylosanthes, maize stover mixture and 1 part of cattle manure),cowdung, 100% NPK and a control replicated three times in a randomizedcomplete block design. The results showed that total microbial load on alogarithmic scale ranged from 4.6 cfu/g in the control to 5.4 on cowdungtreated plots. Bacterial counts on 2:1 compost applied at 5 t/ha treatedplots recorded 5% more bacteria than the 1:1 compost applied at 5 t/ha.Fungal counts in the control and inorganic treated plots were higher than theorganically amended plots. The highest and lowest microbial biomass C contentswere recorded on cowdung and 1:1 compost at 5 t/ha treated plotsrespectively. Microbial biomass N content ranged from 1.4 Ã¢â‚¬Â 8.2 mg N kg‐1soil with a mean value of 6.2 mg N kg Ã¢â‚¬Â1 soil. Microbial biomass P contentranged from 3.6 Ã¢â‚¬Â 6.3 mg P kg‐1 soil with a mean value of 5 mg P kg‐1 soil.Microbial biomass carbon to organic carbon ratio varied from 18.37 to 85.63.


age ◽  
2020 ◽  
Vol 3 (1) ◽  
Author(s):  
April B. Leytem ◽  
Christopher W. Rogers ◽  
David Tarkalson ◽  
Robert S. Dungan ◽  
Richard L. Haney ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document