scholarly journals Removal of Acidic Dye from Aqueous Solution Using Surfactant Modified Bentonite (Organoclay): Batch and Kinetic Study

2020 ◽  
Vol 26 (5) ◽  
pp. 64-81
Author(s):  
Saraa M. Ibrahim ◽  
Ziad T. Abd Ali

Modified bentonite has been used as effective sorbent material for the removal of acidic dye (methyl orange) from aqueous solution in batch system. The natural bentonite has been modified using cationic surfactant (cetyltrimethyl ammonium bromide) in order to obtain an efficient sorbent through converting the properties of bentonite from hydrophilic to organophilic. The characteristics of the natural and modified bentonite were examined through several analyses such as Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Surface area. The batch study was provided the maximum dye removal efficiency of 88.75 % with a sorption capacity of 555.56 mg/g at specified conditions (150 min, pH= 2, 250 rpm, and 0.5 g/100 ml). The-results-showed that with the Freundlich isotherm model the sorption data was accurately described with (R2≥0.94) in comparison with the Langmuir model under the studied conditions. The kinetic studies were revealed that the sorption follows a pseudo-second-order kinetic model which indicates chemisorption between sorbent and sorbate molecules. 

2017 ◽  
Vol 105 (12) ◽  
Author(s):  
Sayed S. Metwally ◽  
Hoda E. Rizk ◽  
Mona S. Gasser

AbstractGreen composites emphasize renewable starting materials for better economy using biomass materials. Therefore, low-cost composite biosorbent was prepared by modification of eggshell material using heteropoly acid for removal of strontium ions from aqueous solution. The resulted composite was characterized and evaluated for the sorption process using the batch technique. Low concentration of strontium ions was used to evaluate the sorption sensitivity of the prepared composite. The obtained experimental results illustrated that the modification process of eggshell material enhanced the percent uptake from 49.9 to 95.7%. From kinetic studies, the sorption of strontium ions follows the pseudo-second-order kinetic model. The isotherm studies indicated that Langmuir is more applicable than Freundlich isotherm. Moreover, Dubinin–Radushkevich isotherm was studied. Thermodynamic studies revealed that the sorption process is spontaneous and has endothermic nature. Strontium ions can be desorbed from the modified eggshell using HNO


2015 ◽  
Vol 17 (3) ◽  
pp. 498-507 ◽  

<div> <p>In this study, Kandira stone, extensively used as a cladding material for building stone has been examined for the removal of an antibiotic Ciprofloxacin hydrochloride (CIP) from its aqueous solution. Batch experiments were performed to investigate the adsorption kinetics, equilibrium and thermodynamics between the adsorbent surfaces and CIP. The sorption data follows Freundlich isotherm. A chemical adsorption was dominant. The adsorption behaviour of CIP onto Kandira stone followed the pseudo-second-order kinetic model, indicating that the adsorption process can be expressed with the chemisorption mechanism. The intraparticle diffusion process is a rate-controlling step. The adsorption thermodynamic parameters of the free energy change (∆G<sup>o</sup>), the isosteric enthalpy change (∆H<sup>o</sup>) and the entropy change (∆S<sup>o</sup>) were calculated. The negative ∆H<sup>o</sup> values indicated that sorption of CIP was the exothermic process. The positive value of ∆G<sup>o</sup> indicates non-spontaneous nature of CIP adsorption.&nbsp;</p> </div> <p>&nbsp;</p>


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Muhammad Hamid Raza ◽  
Aqsa Sadiq ◽  
Umar Farooq ◽  
Makshoof Athar ◽  
Tajamal Hussain ◽  
...  

Batch scale studies for the adsorption potential of novel biosorbentPhragmites karka(Trin), in its natural and treated forms, were performed for removal of mercury ions from aqueous solution. The study was carried out at different parameters to obtain optimum conditions of pH, biosorbent dose, agitation speed, time of contact, temperature, and initial metal ion concentration. To analyze the suitability of the process and maximum amount of metal uptake, Dubinin-Radushkevich (D-R) model, Freundlich isotherm, and Langmuir isotherm were applied. The values ofqmaxfor natural and treated biosorbents were found at 1.79 and 2.27 mg/g, respectively. The optimum values of contact time and agitation speed were found at 50 min and 150 rpm for natural biosorbent whereas 40 min and 100 rpm for treated biosorbent, respectively. The optimum biosorption capacities were observed at pH 4 and temperature 313 K for both naturalP. karkaand treatedP. karka.RLvalues indicate that comparatively treatedP. karkawas more feasible for mercury adsorption compared to naturalP. karka. Both pseudo-first-order and pseudo-second-order kinetic models were applied and it was found that data fit best to the pseudo-second-order kinetic model. Thermodynamic studies indicate that adsorption process was spontaneous, feasible, and endothermic.


2016 ◽  
Vol 73 (7) ◽  
pp. 1728-1737 ◽  
Author(s):  
Ling Li ◽  
Zhennan Shi ◽  
Hongyang Zhu ◽  
Wei Hong ◽  
Fengwei Xie ◽  
...  

In this work, a hybrid of chromium(III) terephthalate metal organic framework (MIL-101) and graphene oxide (GO) was synthesized and its performance in the removal of azo dyes (Amaranth, Sunset Yellow, and Carmine) from water was evaluated. The adsorption for azo dyes on MIL-101/GO was compared with that of MIL-101, and it was found that the addition of GO enhanced the stability of MIL-101 in water and increased the adsorption capacity. The maximum adsorption capacities of MIL-101/GO were 111.01 mg g−1 for Amaranth, 81.28 mg g−1 for Sunset Yellow, and 77.61 mg g−1 for Carmine. The adsorption isotherms and kinetics were investigated, showing that the adsorption fits the Freundlich isotherm and the pseudo-second-order kinetic model. The recyclability of MIL-101/GO was shown by the regeneration by acetone. The high adsorption capability and excellent reusability make MIL-101/GO a competent adsorbent for the removal dyes from aqueous solution.


Author(s):  
Fateme Poorsharbaf Ghavi ◽  
Fereshteh Raouf ◽  
Ahmad Dadvand Koohi

Abstract The elimination of diclofenac traces from aqueous environments is important. In this research, the effect of alkaline (NaOH) pretreatment on clinoptilolite before its modification with a surfactant (HDTMA) for diclofenac adsorption under the speculation of the sole presence of diclofenac in the aqueous solution is investigated. The results are compared through isotherm, kinetic, and thermodynamic studies and supplemented by FTIR, SEM, BET, and the zeta potential analyses. The contact time was investigated in a 0–180-min range. The pH effect was studied in a range of 5–10 because of diclofenac dissociation below pH = 5. The effect of the temperature on diclofenac adsorption was also considered by establishing the experiments at 25, 35, and 45 °C. For HDTMA-modified clinoptilolite, Temkin, and for NaOH-HDTMA-modified clinoptilolite, Dubinin–Radushkevich, and Freundlich isotherm models and in both cases, the pseudo-second-order kinetic model fitted the experimental data best. All the enthalpy and the entropy changes were negative, suggesting exothermic adsorption with a decrease in the degree of freedom of diclofenac anions after the adsorption. Furthermore, diclofenac physisorption was confirmed through isotherm and kinetic studies.


Author(s):  
Buhari Magaji ◽  
Aisha U. Maigari ◽  
Usman A. Abubakar ◽  
Mukhtar M. Sani ◽  
Amina U. Maigari

This study was aimed at using Balanite aegyptiaca seed coats activated carbon (BAAC) as a potential adsorbent to remove safranin dye from aqueous solution. BAAC was prepared from Balanite aegyptiaca seed coats using a one-step procedure with 67.27% yield, 3.23% ash content, 695 m2/g surface area and 203 mg/g iodine number. The FTIR spectroscopy revealed O-H, N-H, C-H, C=C, C-O-H stretching vibrations. The influences of agitation time, initial dye concentration and adsorbent dose were studied in batch experiments at room temperature. The adsorptions were rapid at the first 15 minutes of agitation, with the uptake of 2.746 mg/kg. The adsorption equilibrium was achieved at 90 minutes of agitation. Kinetic studies showed good correlation coefficient for both pseudo-first order and pseudo-second-order kinetics model but fitted well into pseudo-second order kinetic model. The adsorption data fitted well into Langmuir isotherm with correlation coefficient (R2) very close to unity and Langmuir maximum adsorption constant, qm  1.00. Thus, the fitting into Langmuir indicates monolayer coverage on the adsorbents. The results showed that BAAC has the potential to be applied as alternative low-cost adsorbents in the remediation of dye contamination in wastewater.


Toxics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 74
Author(s):  
Elisa Pandelani Munzhelele ◽  
Wasiu Babatunde Ayinde ◽  
Rabelani Mudzielwana ◽  
Wilson Mugera Gitari

Water is regarded as an important natural resource to sustain life, and its purification is an important criterion that determines its quality and usefulness. In this study, the incorporation of Fe3+ oxide onto a phenylenediamine (pPD) polymer matrix through chemical co-polymerization was prepared, and its arsenite and fluoride removal potentials at optimal conditions from aqueous solution were evaluated. The morphology and structural analysis of the synthesized Fe-doped pPD (Fe-pPD) were comparatively evaluated using the FT-IR, SEM, EDS, and XRD techniques. Fe was successfully incorporated onto pPD matrix as confirmed by different morphological characterizations. The rate of adsorption of F− and As3+ onto the Fe-pPD composite best followed the pseudo-second-order kinetic model. The experimental data for both As3+ and F− onto the Fe-pPD composite better fit the Freundlich isotherm model at different operating temperatures. Overall, the synthesized composite exhibited a strong affinity towards fluoride uptake (96.6%) than arsenite uptake (71.14%) with a maximum capacity of 6.79 (F−) and 1.86 (As3+) mg/g. Additionally, the synthesized adsorbent showed some level of antimicrobial activity against common water-borne bacterial. Therefore, the Fe-doped pPD composite has the potential ability for inorganic metal species pollutants remediation and bacterial disinfection in community-level water purification processes.


2010 ◽  
Vol 156-157 ◽  
pp. 217-224 ◽  
Author(s):  
Shan Ping Li ◽  
Jiang Jie Cui

We studied the effects of surface modification of bentonite with chitosan on its ability to adsorb Congo Red (CR) dye. The adsorption behavior of CR from aqueous solution onto raw (RB) and chitosan-modified (CMB) bentonite samples was investigated as a function of parameters such as initial CR concentration, contact time, pH and temperature. Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) were used to confirm the surface modification. Compared with RB, the adsorption capacity of CMB for CR was greatly enhanced. Kinetic studies indicated that the adsorption of CR on both RB and CMB followed the pseudo-second-order kinetic model. From the thermodynamic parameters, the adsorption of CR on RB and CMB is spontaneous and endothermic. The results indicate that chitosan-modified bentonite provides an important advantage for CR dye adsorption over raw bentonite.


2021 ◽  
Vol 11 (5) ◽  
pp. 12831-12842

High amounts of phosphate (PO43–) discharged in receiving water can lead to eutrophication, which endangers life below water and human health. This study elucidates the removal of PO43– from synthetic solution by iron-coated waste mussel shell (ICWMS). The PO43– adsorption by ICWMS was determined at different process parameters, such as initial PO43– concentration (7 mg L−1), solution volume (0.2 L), adsorbent dosage (4, 8, 12, 16, and 20 g), and contact time. The highest efficiency of PO43− removal can reach 96.9% with an adsorption capacity of 0.30 mg g−1 could be obtained after a contact time of 48 h for the use of 20 g of ICWMS. Batch experimental data can be well described by the pseudo-second-order kinetic model (R2 = 0.999) and Freundlich isotherm model (R2 = 0.996), suggesting that chemisorption and multilayer adsorption occurred. The efficiency of PO43– removal from aqueous solution by ICWMS was verified to contribute to applying a new low-cost adsorbent obtained from waste mussel shell in the field of wastewater treatment.


2013 ◽  
Vol 316-317 ◽  
pp. 509-515
Author(s):  
Hua Zhang ◽  
Xue Hong Zhang ◽  
Yi Nian Zhu ◽  
Mei Na Liang ◽  
Rong Rong Lu

In this study, a Fe(III)-impregnated sorbent was prepared from sugarcane bagasse and FeCl3 solution via carbonization/activation in a muffle furnace at 500 °C for 4h. Batch experiments were carried out to determine the capacity of the Fe(III)-impregnated sorbent to adsorb As(V) from aqueous solution. The dynamical data fitted very well with the pseudo-second-order kinetic model and the calculated adsorption capacities of 4.8263, 5.2219 and 7.1225 mg/g were equal to the actual values of the experiments at temperatures of 20, 25, and 35 °C, respectively. The experimental data were modeled by Langmuir and Freundlich isotherm models. The Langmuir isotherm with R2 values of 0.9926-0.9968 could yield better fits than the Freundlich isotherm, and the adsorption was endothermic, indicating monolayer adsorption of As(V).Freundlich isotherm, and the adsorption was endothermic, indicating monolayer adsorption of As(V).


Sign in / Sign up

Export Citation Format

Share Document