The Relationship between Strong Earthquakes, Volcanic Eruptions, and Typhoons in the Philippine Plate Region as a Result of Interaction of Geospheres

2021 ◽  
Vol 76 (5) ◽  
pp. 482-491
Author(s):  
E. V. Arkhipova ◽  
G. V. Bryantseva ◽  
A. D. Zhigalin
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gino González ◽  
Eisuke Fujita ◽  
Bunichiro Shibazaki ◽  
Takumi Hayashida ◽  
Giovanni Chiodini ◽  
...  

AbstractUnderstanding the relationship cause/effect between tectonic earthquakes and volcanic eruptions is a striking topic in Earth Sciences. Volcanoes erupt with variable reaction times as a consequence of the impact of seismic waves (i.e. dynamic stress) and changes in the stress field (i.e. static stress). In 2012, three large (Mw ≥ 7.3) subduction earthquakes struck Central America within a period of 10 weeks; subsequently, some volcanoes in the region erupted a few days after, while others took months or even years to erupt. Here, we show that these three earthquakes contributed to the increase in the number of volcanic eruptions during the 7 years that followed these seismic events. We found that only those volcanoes that were already in a critical state of unrest eventually erupted, which indicates that the earthquakes only prompted the eruptions. Therefore, we recommend the permanent monitoring of active volcanoes to reveal which are more susceptible to culminate into eruption in the aftermath of the next large-magnitude earthquake hits a region.


2021 ◽  
Author(s):  
Matthew Johnson ◽  
Natasha Dowey ◽  
Rebecca Williams ◽  
Pete Rowley

<p>Pyroclastic density currents (PDCs) are hot, density-driven flows of gas, rock and ash generated during explosive volcanic eruptions, or from the collapse of lava domes (e.g. Fisher, 1979; Branney and Kokelaar, 2002; Cas et al. 2011). They pose a catastrophic geological hazard and have caused >90 000 deaths since 1600AD (Auker et al. 2013). Improved understanding of PDCs will enable us to better understand the explosive eruptions that generate them, improving our preparedness for future volcanic events. However, these deadly hazards are rarely observed up close and are difficult to analyse in real-time. To understand the flow dynamics of density currents we must use models and interpretations of their deposits (e.g. Smith N and Kokelaar, 2013; Rowley et al. 2014, Williams et al. 2014, Sulpizio et al. 2014; Lube et al. 2019, Smith G 2018, 2020).</p><p>The deposits of pyroclastic density currents, known as ‘ignimbrites’ can reveal important clues about how these deadly volcanic hazards behave in time and space Reverse grading in an ignimbrite can be interpreted in different ways (Branney & Kokelaar, 2002). It could record a growing eruption intensity through time - where increasingly larger clasts are introduced into the pyroclastic density current. Alternatively, it could record Kinematic sorting (the ‘muesli effect’) and transport processes within the current where larger particles became increasingly likely to be deposited as the current wanes (Palladino & Valentine,1995). The link between current dynamics and reverse grading is currently untested in aerated granular currents.</p><p>This project seeks to investigate the relationship between current dynamics and deposit architecture, specifically by considering granular sorting mechanisms in unidirectional flow. We will use an analogue flume (following methods in Rowley et. al., 2014, and Smith G et al., 2018, 2020) to explore how reverse grading and lateral grading may be related to changes in grain sizes at source versus kinematic sorting processes. A mix of grain sizes will be incorporated into the current via a hopper which allows for the starting composition of the current to be varied e.g. homogenous mix versus layered. Photographs of the deposit will be taken through the transparent sidewall of the flume and analysed using image analysis software. These experiments will be complimented by static tests of kinematic sorting, where a Perspex column will be sliced to reveal internal 3d architecture. This project will contribute to our understanding of lithofacies architecture in the field, and help to quantity how we interpret the sedimentation of ignimbrites.</p><p><em>References</em></p><p>Auker et al. (2013) https://doi.org/10.1186/2191-5040-2-2</p><p>Branney and Kokelaar (2002) https://doi.org/10.1144/GSL.MEM.2003.027</p><p>Cas et al. (2011) Bulletin of Volcanology 731583 https://doi.org/10.1007/s00445-011-0564-y</p><p>Fisher (1979) https://doi.org/10.1016/0377- 0273(79)90008-8    </p><p>Lube et al. (2019) https://doi.org/10.1038/s41561-019-0338-2</p><p>Palladino & Valentine (1995). https://doi.org/10.1016/0377-0273(95)00036-4</p><p>Rowley et al. (2014) https://doi.org/10.1007/s00445-014-0855-1</p><p>Smith N. and Kokelaar (2013) https://doi.org/10.1007/s00445-013-0768-4</p><p>Smith G. et al. (2018) https://doi.org/10.1007/s00445-018-1241-1</p><p>Smith, G. et al. (2020). https://doi.org/10.1038/s41467-020-16657-z</p>


1999 ◽  
Vol 12 (6) ◽  
pp. 647-658 ◽  
Author(s):  
Lan-Xi Xiao ◽  
Yuan-Qing Zhu ◽  
Shao-Quan Zhang ◽  
Xu Liu ◽  
Yu Guo

2021 ◽  
Author(s):  
Matthew Toohey ◽  
Yue Jia ◽  
Susann Tegetmeier

<p>The cumulative radiative impact of major volcanic eruptions depends strongly on the length of time volcanic sulfate aerosol remains in the stratosphere. Observations of aerosol from recent eruptions have been used to suggest that residence time depends on the latitude of the volcanic eruption, with tropical eruptions producing aerosol loading that persists longer than that from extratropical eruptions. However, the limited number of eruptions observed make it difficult to disentangle the roles of latitude and injection height in controlling aerosol lifetime. Here we use satellite observations and model experiments to explore the relationship between eruption latitude, injection height and resulting residence time of stratospheric aerosol. We find that contrary to earlier interpretations of observations, the residence time of aerosol from major tropical eruptions like Pinatubo (1991) is on the order of 24 months. Model results suggest that the residence time is greatly sensitive to the height of the sulfur injection, especially within the lowest few kilometers of the stratosphere. As injection heights and latitudes are unknown for the majority of eruptions over the common era, we estimate the impact of this uncertainty on volcanic aerosol forcing reconstructions. </p>


2012 ◽  
Vol 12 (2) ◽  
pp. 351-363 ◽  
Author(s):  
X. L. Chen ◽  
Q. Zhou ◽  
H. Ran ◽  
R. Dong

Abstract. Southwest China is located in the southeastern margin of the Tibetan Plateau and it is a region of high seismic activity. Historically, strong earthquakes that occurred here usually generated lots of landslides and brought destructive damages. This paper introduces several earthquake-triggered landslide events in this region and describes their characteristics. Also, the historical data of earthquakes with a magnitude of 7.0 or greater, having occurred in this region, is collected and the relationship between the affected area of landslides and earthquake magnitude is analysed. Based on the study, it can be concluded that strong earthquakes, steep topography as well as fragile geological environment, are the main reasons responsible for serious landslides in southwest China. At the same time, it is found that the relationship between the area affected by landslides and the earthquake magnitude in this region are consistent with what has been obtained worldwide. Moreover, in this paper, it is seen that the size of the areas affected by landslides change enormously even under the same earthquake magnitude in the study region. While at the same tectonic place or fault belt, areas affected by landslides presented similar outline and size. This means that local geological conditions and historical earthquake background have an important influence on landslides distribution, and they should be considered when assessing earthquake-triggered landslide hazards at Grade 1 according to ISSMGE.


2014 ◽  
Vol 535 ◽  
pp. 460-463
Author(s):  
Dong Yin Han

The techniques are referred to as analyzing the relationship between the events of the lithosphere getting thermal and the changes of weakened release energies of strong earthquakes that might be related with the ones of increased exploitation quantities of the global three-large fossil fuels of coal,oil and gas ,and the relationship between the events of earth crust expansion getting thermal with the accumulated increasing of the land crust expansion thickness from calculation and the accumulated increasing of fossil fuels being exploited,et al. The three mechanism-modes of earth's epidermis warming over the past 100 years since 1890 from earth interior changes with relation to fossil fuels being exploited were suggested that the weakened release energies of global strong earthquakes caused by the increasing of earth thermal stress energies and overall warming of lithosphere, the “weightlessness” and expansion and getting thermal of continental crust,the increasing of earth currents and heat quantities generated by added origid geological and tectonic activities in mining areas and earth's surface getting thermal.


2013 ◽  
Vol 13 (4) ◽  
pp. 1781-1796 ◽  
Author(s):  
S. M. Andersson ◽  
B. G. Martinsson ◽  
J. Friberg ◽  
C. A. M. Brenninkmeijer ◽  
A. Rauthe-Schöch ◽  
...  

Abstract. Large volcanic eruptions impact significantly on climate and lead to ozone depletion due to injection of particles and gases into the stratosphere where their residence times are long. In this the composition of volcanic aerosol is an important but inadequately studied factor. Samples of volcanically influenced aerosol were collected following the Kasatochi (Alaska), Sarychev (Russia) and also during the Eyjafjallajökull (Iceland) eruptions in the period 2008–2010. Sampling was conducted by the CARIBIC platform during regular flights at an altitude of 10–12 km as well as during dedicated flights through the volcanic clouds from the eruption of Eyjafjallajökull in spring 2010. Elemental concentrations of the collected aerosol were obtained by accelerator-based analysis. Aerosol from the Eyjafjallajökull volcanic clouds was identified by high concentrations of sulphur and elements pointing to crustal origin, and confirmed by trajectory analysis. Signatures of volcanic influence were also used to detect volcanic aerosol in stratospheric samples collected following the Sarychev and Kasatochi eruptions. In total it was possible to identify 17 relevant samples collected between 1 and more than 100 days following the eruptions studied. The volcanically influenced aerosol mainly consisted of ash, sulphate and included a carbonaceous component. Samples collected in the volcanic cloud from Eyjafjallajökull were dominated by the ash and sulphate component (∼45% each) while samples collected in the tropopause region and LMS mainly consisted of sulphate (50–77%) and carbon (21–43%). These fractions were increasing/decreasing with the age of the aerosol. Because of the long observation period, it was possible to analyze the evolution of the relationship between the ash and sulphate components of the volcanic aerosol. From this analysis the residence time (1/e) of sulphur dioxide in the studied volcanic cloud was estimated to be 45 ± 22 days.


Sign in / Sign up

Export Citation Format

Share Document