Photovoltaic Properties of Thin Films Based on a Composite of PbS Quantum Dots and a Fullerene Derivative: A Complex Ester of Butyric Acid

2020 ◽  
Vol 84 (5) ◽  
pp. 505-507
Author(s):  
A. E. Aleksandrov ◽  
M. A. Zvaigzne ◽  
A. R. Tameev ◽  
A. A. Chistyakov
2015 ◽  
Vol 54 (30) ◽  
pp. 7382-7392 ◽  
Author(s):  
Ahmad Tayyebi ◽  
Mohammad Mahdi Tavakoli ◽  
Mohammad Outokesh ◽  
Azizollah Shafiekhani ◽  
Abdolreza (Arash) Simchi

2016 ◽  
Vol 71 (11) ◽  
pp. 1067-1071
Author(s):  
Masood Mehrabian ◽  
Parinaz Abdollahian

AbstractPbS Quantum dots and P3HT are promising materials for photovoltaic applications due to their absorption in the NIR and visible region, respectively. Our previous experimental work showed that doping Al to ZnO lattice (Al:ZnO) could efficiently improve the cell performance. In this article, hybrid solar cells containing of two active areas with ITO/Al:ZnO/PbS QDs/P3HT&PCBM/Ag structure were fabricated and the effect of PbS QD size on photovoltaic properties was investigated. Optimised solar cell showed maximum power conversion efficiency of 2.45 % with short-circuit current of 9.36 mA/cm2 and open-circuit voltage of 0.59 V under 1 sun illumination (AM1.5).


Nanoscale ◽  
2020 ◽  
Vol 12 (20) ◽  
pp. 11174-11181
Author(s):  
Pan Xia ◽  
Daniel W. Davies ◽  
Bijal B. Patel ◽  
Maotong Qin ◽  
Zhiming Liang ◽  
...  

Thin films of PbS quantum dots with short fully fluorinated trifluoromethylthiolate ligands (⊖SCF3) were spin-coated. TEM and GISAXS indicated a cubic superlattice. Thin film transistor hole mobilities as high as 0.085 cm2 V−1 s−1 were obtained.


2020 ◽  
Author(s):  
Iván Mora-Seró ◽  
Sofia Masi ◽  
David Macias-Pinilla ◽  
Carlos Echeverría-Arrondo ◽  
Juan Ignacio Climente

Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4439
Author(s):  
Shui-Yang Lien ◽  
Yu-Hao Chen ◽  
Wen-Ray Chen ◽  
Chuan-Hsi Liu ◽  
Chien-Jung Huang

In this study, adding CsPbI3 quantum dots to organic perovskite methylamine lead triiodide (CH3NH3PbI3) to form a doped perovskite film filmed by different temperatures was found to effectively reduce the formation of unsaturated metal Pb. Doping a small amount of CsPbI3 quantum dots could enhance thermal stability and improve surface defects. The electron mobility of the doped film was 2.5 times higher than the pristine film. This was a major breakthrough for inorganic quantum dot doped organic perovskite thin films.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tamara Sloboda ◽  
Sebastian Svanström ◽  
Fredrik O. L. Johansson ◽  
Aneta Andruszkiewicz ◽  
Xiaoliang Zhang ◽  
...  

AbstractTime-resolved photoelectron spectroscopy can give insights into carrier dynamics and offers the possibility of element and site-specific information through the measurements of core levels. In this paper, we demonstrate that this method can access electrons dynamics in PbS quantum dots over a wide time window spanning from pico- to microseconds in a single experiment carried out at the synchrotron facility BESSY II. The method is sensitive to small changes in core level positions. Fast measurements at low pump fluences are enabled by the use of a pump laser at a lower repetition frequency than the repetition frequency of the X-ray pulses used to probe the core level electrons: Through the use of a time-resolved spectrometer, time-dependent analysis of data from all synchrotron pulses is possible. Furthermore, by picosecond control of the pump laser arrival at the sample relative to the X-ray pulses, a time-resolution limited only by the length of the X-ray pulses is achieved. Using this method, we studied the charge dynamics in thin film samples of PbS quantum dots on n-type MgZnO substrates through time-resolved measurements of the Pb 5d core level. We found a time-resolved core level shift, which we could assign to electron injection and charge accumulation at the MgZnO/PbS quantum dots interface. This assignment was confirmed through the measurement of PbS films with different thicknesses. Our results therefore give insight into the magnitude of the photovoltage generated specifically at the MgZnO/PbS interface and into the timescale of charge transport and electron injection, as well as into the timescale of charge recombination at this interface. It is a unique feature of our method that the timescale of both these processes can be accessed in a single experiment and investigated for a specific interface.


2021 ◽  
Vol 546 ◽  
pp. 149086
Author(s):  
Xiangping Pan ◽  
Yanhua Dong ◽  
Ming Jia ◽  
Jianxiang Wen ◽  
Caiyun Su ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document