scholarly journals Preparation and characterization of diamond-silicon carbide-silicon composites by gaseous silicon vacuum infiltration process

2014 ◽  
Vol 36 (6) ◽  
pp. 410-414 ◽  
Author(s):  
R. J. Liu ◽  
Y. B. Cao ◽  
C. L. Yan ◽  
C. R. Zhang ◽  
P. B. He
Author(s):  
R. J. Lauf

Fuel particles for the High-Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) combined effects of irradiation and fission products. This paper reports the behavior of SiC deposited on inert microspheres and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


2004 ◽  
Vol 230-232 ◽  
pp. 1-16 ◽  
Author(s):  
William M. Vetter

Synchrotron white-beam x-ray topographs taken in the back-reflection mode have proved a powerful tool in the study of defects in semiconductor-grade silicon carbide crystals. Capable of mapping the distribution of axial dislocations across a wafer's area (notably the devastating micropipe defect), it can also provide information on their natures. Under favorable conditions, various other types of defect may be observed in back-reflection topographs of SiC, among which are subgrain boundaries, inclusions, and basal plane dislocations. Observed defect images in backreflection topographs may be simulated using relatively simple computer algorithms based on ray tracing. It has been possible to use back-reflection topographs of SiC substrates with device structures deposited upon them to relate the incidence of defects to device failure.


2005 ◽  
Vol 900 ◽  
Author(s):  
Claudiu I. Muntele ◽  
Sergey Sarkisov ◽  
Iulia Muntele ◽  
Daryush Ila

ABSTRACTSilicon carbide is a promising wide-bandgap semiconductor intended for use in fabrication of high temperature, high power, and fast switching microelectronics components running without cooling. For hydrogen sensing applications, silicon carbide is generally used in conjunction with either palladium or platinum, both of them being good catalysts for hydrogen. Here we are reporting on the temperature-dependent surface morphology and depth profile modifications of Au, Ti, and W electrical contacts deposited on silicon carbide substrates implanted with 20 keV Pd ions.


Author(s):  
Tayaramma D.P.V. Jalluri ◽  
Girish M. Gouda ◽  
Arjun Dey ◽  
B. Rudraswamy ◽  
K.V. Sriram

Sign in / Sign up

Export Citation Format

Share Document