PHOSPHATSOLUBILIZING BACTERIA OF THE GENUS PSEUDOMONAS AND THE EFFICIENCY OF THEIR APPLICATION TO INCREASE THE AVAILABILITY OF PHOSPHORUS

2021 ◽  
Vol 0 (3) ◽  
pp. 11-16
Author(s):  
E.V. KUZINA ◽  
◽  
G.F. RAFIKOVA ◽  
T.YU. KORSHUNOVA ◽  
◽  
...  

Phosphorus is the second most important element for plants after nitrogen. Fertilizers based on it, used to stimulate productivity, are inaccessible for most crops, which leads to their accumulation in the soil and environmental pollution. The use of phosphate-solubilizing bacteria increases the amount of phosphorus absorbed by plants. In most publications describing this group of bacteria, their effectiveness is assessed only in vitro by the halo zones formed on agar media with calcium orthophosphate. The aim of this study was to compare the solubilizing properties of bacteria of the genus Pseudomonas on a solid nutrient medium, as well as in sand and soil. It was shown that all studied cultures of microorganisms are capable of solubilizing insoluble phosphate in Pikovskaya's medium. The most active strains were Pseudomonas laurentiana ANT 56 and Pseudomonas sp. IB 182, isolated from the activated sludge of biological treatment facilities and arable soil, respectively. Experiments with the introduction of strains showed that the amount of mobile phosphorus in the sand increased 2.6-3.8 times in two weeks (in the control 1.2 times), while in the experiment with soil, a significant increase in the content of mobile phosphorus compared to the control was recorded only for the strain P . laurentiana ANT 17 (by 29.1%). It is assumed that the high solubilizing activity of the P. laurentiana ANT 17 strain may be due to the complex action of mechanisms of different nature, including the synthesis of indolyl-3-acetic acid and exopolysaccharide. The studies carried out make it possible to consider this bacterial strain as a promising object for creating on its basis a biological preparation for agricultural purposes.

2021 ◽  
Vol 16 (8) ◽  
pp. 110-117
Author(s):  
Kannan Abhirami ◽  
K. Jayakumar

Phosphorous is considered as a major parameter for crop yield. Its availability to plant is independent of its abundance. For the plants to utilize phosphorous, it is to be converted to absorbable form. Here, the part rendered by phosphate solubilizing bacteria is significant for it plays a crucial role in the formation of plant usable phosphate from organic forms. In the present work, an effort had been made to isolate and identify phosphate solubilising bacterial isolate from the rhizhospheric soils of various plants in Ponthenpuzha forest. One of the isolate from Cymbopogon citrates responded positively to Pikovskaya’s medium by producing a halo zone during in vitro culture. Colony features and 16S rRNA sequence analysis identified the isolate as Burkholderia sps. We have reported the presence of genus Burkholderia in the rhizospheric zone of Cymbopogon citratus. Further studies are warranted for species level identification of the isolate.


Author(s):  
Rajiv Pathak ◽  
Vipassana Paudel ◽  
Anupama Shrestha ◽  
Janardan Lamichhane ◽  
Dhurva. P. Gauchan

Phosphorous (P) is an essential macronutrient and most soils contain high levels of P. However, its availability to plant is limited by rapid immobilization of phosphorous compounds to insoluble forms and hence plant available forms of P in soils are found in low amounts. Phosphate solubilizing bacteria provide an eco-friendly alternative to convert insoluble phosphates into plant available forms. In the present study, three phosphate solubilizing bacterial isolates (PB-1, PB-4 and VC-01) with visually significant phosphate solubilizing abilities were isolated from tomato rhizosphere soil. In-vitro study in pikovskaya’s agar revealed that isolate PB-1 had the highest phosphate solubilizing ability with a phosphate solubilizing index of 2.08±0.07 followed by isolate VC-01 (1.31±0.09) and PB-4 (1.24±0.08). Isolates were used as bacterial inoculum to assess their ability to promote tomato (Lycopersicon esculentum var. Srijana) seedling and plant growth in in-vitro and greenhouse experiment respectively. Isolate PB-4 showed best growth promotion in seedling assay whereas isolate PB-1 and VC-01 also promoted seedling growth compared to control. In greenhouse experiment however, isolates VC-01 and PB-1 significantly enhanced all parameters (shoot length, root length, shoot and root dry weight) compared to uninoculated control whereas isolate PB-4 had a positive effect on all parameters except root length.Kathmandu University Journal of Science, Engineering and TechnologyVol. 13, No. 2, 2017, page: 61-70


2021 ◽  
Vol 12 ◽  
Author(s):  
Mahreen Yahya ◽  
Ejaz ul Islam ◽  
Maria Rasul ◽  
Iqra Farooq ◽  
Naima Mahreen ◽  
...  

Phosphorous (P) deficiency is a major challenge faced by global agriculture. Phosphate-solubilizing bacteria (PSB) provide a sustainable approach to supply available phosphates to plants with improved crop productivity through synergistic interaction with plant roots. The present study demonstrates an insight into this synergistic P-solubilizing mechanism of PSB isolated from rhizosphere soils of major wheat-growing agro-ecological zones of Pakistan. Seven isolates were the efficient P solubilizers based on in vitro P-solubilizing activity (233-365 μg ml–1) with a concomitant decrease in pH (up to 3.5) by the production of organic acids, predominantly acetic acid (∼182 μg ml–1) and gluconic acid (∼117 μg ml–1). Amplification and phylogenetic analysis of gcd, pqqE, and phy genes of Enterobacter sp. ZW32, Ochrobactrum sp. SSR, and Pantoea sp. S1 showed the potential of these PSB to release orthophosphate from recalcitrant forms of phosphorus. Principal component analysis indicates the inoculation response of PSB consortia on the differential composition of root exudation (amino acids, sugars, and organic acids) with subsequently modified root architecture of three wheat varieties grown hydroponically. Rhizoscanning showed a significant increase in root parameters, i.e., root tips, diameter, and surface area of PSB-inoculated plants as compared to uninoculated controls. Efficiency of PSB consortia was validated by significant increase in plant P and oxidative stress management under P-deficient conditions. Reactive oxygen species (ROS)-induced oxidative damages mainly indicated by elevated levels of malondialdehyde (MDA) and H2O2 contents were significantly reduced in inoculated plants by the production of antioxidant enzymes, i.e., superoxide dismutase, catalase, and peroxidase. Furthermore, the inoculation response of these PSB on respective wheat varieties grown in native soils under greenhouse conditions was positively correlated with improved plant growth and soil P contents. Additionally, grain yield (8%) and seed P (14%) were significantly increased in inoculated wheat plants with 20% reduced application of diammonium phosphate (DAP) fertilizer under net house conditions. Thus, PSB capable of such synergistic strategies can confer P biofortification in wheat by modulating root morphophysiology and root exudation and can alleviate oxidative stress under P deficit conditions.


Author(s):  
V.Zh. Nguyen ◽  
◽  
T.O. Dao ◽  
E. A. Kalashnikova ◽  
Th.H. Nguyen

The purpose of this work is to isolate bacteria from the pepper rhizosphere that inhibit Rhizoctoniasolani and evaluate in vitro their phosphate solubilizing activity and production of siderophore. Of the different soil samples taken from the pepper fields of An Thanh, An Ninh, Quynh My, QuynhPhudistrict, ThaiBinh province, 48 bacterial strains were isolated. Of these, 5 strains (AT16, VK 4.7, VK 4.8, VK 4.12, VK 4.13) expressed as higher inhibitory Rhizoctonia solani activity were selected. Their inhibitory activity is from 11.11% to 62.22%.


2017 ◽  
Vol 5 (1) ◽  
pp. 32-35 ◽  
Author(s):  
Lalmuankimi Khiangte ◽  
◽  
R. Lalfakzuala

The phosphate solubilizing bacteria (phosphobacteria) secrete organic acids and phosphatase enzymes which act on insoluble phosphates and convert the same into soluble forms thus providing available phosphorus to the plants. They are also known to produce amino acids, vitamins and growth promoting substance like indole acetic acid (IAA), which helps in better growth of plants. The present studyaimed to isolate and screen out phosphate solubilizing bacteria from soil rhizosphere using serial dilution technique on pikovskaya agar plate. An effort was also made to obtain bacterial isolates for producing phosphatase enzyme and to study the production of IAA in NBRIP media containing tryptophan as a substrate.A total of 17 strains were isolated from soil rhizosphere and all the strains were able to produce IAA and phosphatase enzyme in vitro condition.


1991 ◽  
Vol 69 (2) ◽  
pp. 342-346 ◽  
Author(s):  
F. Lapeyrie ◽  
J. Ranger ◽  
D. Vairelles

An easy to use method is presented here to compare and study the mineral phosphate-solubilizing activity of ectomycorrhizal fungi. This technique can discriminate between strains with differing phosphate-solubilizing activities. Synthetic mineral phosphates, crystalline or amorphous, were differentially solubilized by 10 ectomycorrhizal fungi. Natural crystalline phosphates studied do not seem to be solubilized by fungi under similar experimental conditions. Paxillus involutus 1 appears to be able to solubilize calcium phosphates using either ammonium or nitrate nitrogen, but the other isolates were able to effectively solubilize phosphate only in the presence of ammonium. This has implications regarding the possible mechanism used to solubilize phosphate by these isolates. Recrystallization can be seen in the culture medium if calcium ions are present. The type of crystals depends on the phosphate source and on the fungal strain. This technique is suitable for screening a large number of ectomycorrhizal strains. The significance of phosphate-solubilizing activity to plant growth stimulation needs to be determined by field trials. Key words: ectomycorrhizal fungus, phosphate, solubilization.


2007 ◽  
Vol 55 (3) ◽  
pp. 315-323 ◽  
Author(s):  
P. Wani ◽  
M. Khan ◽  
A. Zaidi

A total of 32 bacterial isolates including Mesorhizobium (N=10), Azotobacter (N=12) and phosphate-solubilizing bacteria (N=10) were isolated and tested for siderophore, HCN, ammonia, indole acetic acid production and phosphate solubilization in vitro . The bacterial cultures were positive for siderophore, HCN and ammonia. Among the isolates, M. ciceri RC3 and A. chrococcum A4 displayed 35 and 14 μg ml −1 of IAA, respectively, whereas Bacillus produced 19 ( Bacillus PSB1) and 17 μg ml −1 ( Bacillus PSB10) of IAA in Luria Bertani broth. The diameter of the P solubilization zone varied between 4 ( Bacillus PSB1) and 5 mm ( Bacillus PSB10) and a considerable amount of tricalcium phosphate (7 and 8 μg ml −1 by Bacillus PSB1 and Bacillus PSB10, respectively) was released in liquid medium, with a concomitant drop in pH. The effects of N 2 -fixing and PS bacteria on the growth, chlorophyll content, seed yield, grain protein and N uptake of chickpea plants in field trials varied considerably between the treatments. Nodule number and biomass were significantly greater at 90 days after sowing (DAS), decreasing by 145 DAS. Seed yield increased by 250% due to inoculation with M. ciceri RC3 + A. chroococcum A4 + Bacillus PSB10, relative to the control treatment. Grain protein content ranged from 180 ( Bacillus PSB1) to 309 ng g −1 ( M. ciceri RC3 + A. chroococcum A4 + Bacillus PSB10) in inoculated chickpea. The N contents in roots and shoots differed considerably among the treatments.


2018 ◽  
Vol 13 (3) ◽  
pp. 233-240 ◽  
Author(s):  
Tri Candra Setiawati ◽  
Paniman Asna Mihardja

Phosphate solubilizing bacteria (PSB) metabolites are organic acids, phosphomonoesterase enzyme (alkaline phosphatase) and antibiotic, which is able to dissolve insoluble phosphate. Phosphate solubilizing bacteria used in this study was expected to suppress Rhizoctonia solani attacks. This experiment was aimed at (1)  identifiying and quantifying  PSB metabolites, and (2) examining their capability as biocontrol agent for Rhizoctonia solani in vitro and hydroponics soybean. This study was conducted in three stages. The first stage of this study was culturing two PSB isolates (Pseudomonas putida 27.4B and Pseudomonas diminuta) in the Pikovskaya medium to analyze their metabolites. The second and third stage of this study was testing the antagonist of two bacteria to suppressed R. solani activity, which was conducted in vitro, and in hydroponics medium soybean as indicator plant. The results showed that P. putida 27.4B and P. diminuta produced organic acids i.e.: citrate, formic, succinic, acetic, propionate, butyrate, and oxalate. The totals of organic acids from each bacterium were 70,3 mg.kg-1 and 61,9 mg.kg-1. Production of alkaline phosphatase enzyme in Pikovskaya medium of P. Putida27.4B was 11,71 μg pNP .mL-1.h-1 and P. diminuta was 24,04  μg pNP.mL-1.h-1. Concentration of this enzyme in soil medium was higher than that in Pikovskaya medium with 26,27 μg pNP.g-1.h-1 and 39,03 μg pNP.g-1.h-1 respectively. This study also showed that total concentration of antibiotics (tetracycline, oxitetracycline and penicillin) produced by the PSB, were 3,2 μg.mL-1 (P. putida 27.4B) and 10,96 μg.m1-1 (P. diminuta), respectively. The results from second stage of this study showed that by using in vitro, the reduced growth of  R. solani was observed 58,35% with P. putida 27.4B and 41,96% with P. diminuta. In addition, inoculations of PSB in hydroponics medium reduced the fungal pathogenesis from 10,71% to 21,42% of pre and post emergence damping-off. Visually, the symptom of pathogen attack appeared within the period of  2 untill 14 days after infection.


2020 ◽  
Vol 21 (2) ◽  
Author(s):  
Meli Astriani ◽  
SITI ZUBAIDAH ◽  
ABDUL LATIEF ABADI ◽  
ENDANG SUARSINI

Abstract. Astriani M, Zubaidah S, Abadi AL, Suarsini E. 2020. Pseudomonas plecoglossicida as a novel bacterium for phosphate solubilizing and indole-3-acetic acid-producing from soybean rhizospheric soils of East Java, Indonesia. Biodiversitas 21: 578-586. The use of synthetic fertilizers to grow soybean (Glycine max (L.) Merrill) in a long time, can increase the risk of environmental damage. Therefore, the current study aimed to find phosphate solubilizing bacteria that can produce indole-3-acetic acid (IAA) hormone to minimize the use of chemical fertilizers. Superior isolates selected through characterization of phosphate solubilization activity on Pikovskaya medium, screening of IAA producing bacteria, quantitative estimation of phosphate solubilizing activity using a spectrophotometer, hypersensitivity assay, antagonist within isolate assay, and molecular identification of selected bacterial isolates using 16S rRNA sequencing with primer forward 63f and primer reverse 1387r. Among the isolated bacteria, isolate Arj8 showed the highest phosphate solubilizing activity and IAA production. Molecular identification indicated that isolate Arj8 shared 100% similarity with Pseudomonas plecoglossicida. The highest phosphate solubilizing activity (75.39 mg/L) and IAA production (38.89 ppm) recorded on day-3. Multiple potentialities of P. plecoglossicida as phosphate solubilizing and IAA producing bacterium are a novel finding in the development of bioinoculants as bio-fertilizers that can reduce dependency on synthetic chemical fertilizers.


2015 ◽  
Vol 20 (3) ◽  
pp. 121-131
Author(s):  
Luz Marina LIZARAZO FORERO ◽  
Elsa Giovanna ÁVILA MARTÍNEZ ◽  
Francisco CORTÉS PÉREZ

<p>El objetivo de esta investigación fue aislar y caracterizar bacterias solubilizadoras de fosfatos (BSF) asociadas a la rizosfera de <em>Baccharis macrantha </em>y <em>Viburnum triphyllum,</em> y evaluar su capacidad para solubilizar fosfatos en condiciones <em>in vitro</em>. Además se determinó el efecto de la inoculaciónde las cepas de BSF más eficientes sobre el crecimiento de <em>B. macrantha</em>. Las muestras de suelo rizosférico de <em>B. macrantha </em>y <em>V. triphyllum </em>fueron colectadas en los meses de mayo-período de lluvia y septiembre-período seco del 2012. Para la cuantificación de bacterias heterótrofas cultivables y BSF se empleó el método de recuento en placa en los medios Agar Tripticasa de Soya y Pikovskaya (PVK) respectivamente. La capacidad de solubilización de fosfatos de las cepas aisladas se estimó a partir del diámetro de los halos formados alrededor de las colonias en el medio de cultivo PVK después de 7 días de incubación a 28 °C. Los ensayos de inoculación en <em>B. macrantha </em>se realizaron con las BSF más eficientes<em>. </em>La inoculación de las BSF <em>B. firmus y P. fluorescens</em> de forma individual y como inoculante combinado mostro un efecto benéfico, incrementando significativamente el porcentaje de germinación de semillas, la altura de la plántula, la longitud de la raíz y el peso seco de <em>B. macrantha</em>. La inoculación de BSF podría ser considerada una estrategia para mejorar el crecimiento y establecimiento de <em>B. macrantha</em> en pastizales abandonados.</p><p><strong>Growth Promotion of <em>Baccharis macrantha </em>(Asteraceae) by Phosphate Solubilizing Rhizosphere Bacteria</strong>     </p><p>The objectives of this research was to isolate and characterize phosphate solubilizing bacteria (BSF) associated to the rhizosphere of <em>Baccharis macrantha</em> and <em>Viburnum triphyllum</em>, and to assess their ability to solubilize phosphate under conditions in vitro. Furthermore to determine the effect of inoculation of the strains BSF more efficient on the growth of <em>B. macrantha</em>. Rhizosphere soil samples of <em>B. macrantha</em> and <em>V. triphyllum </em>were collected in the months of May-rainy season and September-period dry the 2012. Trypticase Soya Agar and Pikovskaya (PVK) were used for quantification of culturable heterotrophic bacteria and BSF, respectively. The phosphate solubilizing capacity of the isolated strains was estimated from the diameter of the halo around the colonies formed in the culture medium PVK after 7 days incubation at 28 °C. Inoculation assays were performed with more efficient BSF in <em>B. macrantha. </em>Inoculation of BSF <em>Bacillus firmus</em> and <em>Pseudomona fluorescens </em>individually and as inoculant combined showed a beneficial effect, significantly increasing the percentage of seed germination, seedling height, root length and dry weight of <em>B . macrantha</em>. Inoculation the BSF could be considered a strategy to improve the growth and development of <em>B. macrantha</em> in abandoned pastures</p>


Sign in / Sign up

Export Citation Format

Share Document