Safety and Health Benefits of Novel Dietary Supplements Consisting Multiple Phytochemicals, Vitamins, Minerals and Essential Fatty Acids in High Fat Diet Fed Rats

2015 ◽  
Vol 13 (4) ◽  
pp. 353-367
Author(s):  
Vanu Ramkumar Ramprasath ◽  
Peter J. H. Jones
2017 ◽  
Vol 7 (2) ◽  
pp. 135
Author(s):  
Zhiqiang Zheng ◽  
Jigang Han ◽  
Yingyi Mao ◽  
Xue Tang ◽  
Yan Guan ◽  
...  

Background: Tree peony (Paeonia ostii) seed oil is rich in different unsaturated fatty acids, including monounsaturated fatty acids (MUFA), n-3 and n-6 polyunsaturated fatty acids (PUFA). Health benefits of this edible plant oil as a whole are barely known yet. In this study, we experimentally investigated benefits of dietary tree peony seed oil (PSO) in dyslipidemia-associated metabolic diseases using a high fat diet hamster model.Methods: High fat diets (HFD) containing 15 % coconut oil (CO) or PSO were first developed based on the rodent chow diet. Fatty acid profiles of diets and red blood cells (RBC) from animals fed these diets for 8 weeks were analyzed and compared. Effects of these oil supplements on triglycerides and cholesterol levels were characterized. Benefits on fatty liver progress were also investigated in this animal model.  Results: HFD fortified with 15% PSO was abundant in different unsaturated fatty acids, containing 40% α-linolenic acid, 27% linoleic acid and 23% oleic acid, respectively. Compared to the control group with 15% CO, animals with 15% PSO displayed dramatic alteration of in vivo fatty acid profile in RBC, featured with a significant increase in n-3 but no change in n-6 PUFA, resulting in decreased ratio of n-6 to n-3 PUFA. PSO intervention also remarkably reduced triglyceride levels in both blood and adipose tissues, while did not affect circulating cholesterol. Moreover, benefits on liver health were observed in the PSO group, evidenced with reduced hepatic steatosis and improved hepatic histology. Conclusion: These data altogether demonstrated multifaceted benefits of dietary PSO in reducing important risk factors of dyslipidemia-associated cardiovascular and liver diseases.Keywords: Peony seed oil, High fat diet, Triglyceride, Cholesterol, Hepatic steatosis


2021 ◽  
Author(s):  
Xiaodan Lu ◽  
Rongbin Zhong ◽  
Ling Hu ◽  
Luyao Huang ◽  
Lijiao Chen ◽  
...  

Abstract Large yellow croaker roe phospholipids (LYCRPLs) has great nutritional value because of containing rich docosahexaenoic acid (DHA), which is a kind of n-3 polyunsaturated fatty acids (n-3 PUFAs). In...


2017 ◽  
Vol 152 (5) ◽  
pp. S418
Author(s):  
Yuki Hirata ◽  
Shinji Fukuda ◽  
Kazuhiko Yamada ◽  
Kazuhide Higuchi ◽  
Yuki I. Kawamura ◽  
...  

2020 ◽  
Vol 11 (4) ◽  
pp. 347-359
Author(s):  
D. Valent ◽  
L. Arroyo ◽  
E. Fàbrega ◽  
M. Font-i-Furnols ◽  
M. Rodríguez-Palmero ◽  
...  

The pig is a valuable animal model to study obesity in humans due to the physiological similarity between humans and pigs in terms of digestive and associated metabolic processes. The dietary use of vegetal protein, probiotics and omega-3 fatty acids is recommended to control weight gain and to fight obesity-associated metabolic disorders. Likewise, there are recent reports on their beneficial effects on brain functions. The hypothalamus is the central part of the brain that regulates food intake by means of the production of food intake-regulatory hypothalamic neuropeptides, as neuropeptide Y (NPY), orexin A and pro-opiomelanocortin (POMC), and neurotransmitters, such as dopamine and serotonin. Other mesolimbic areas, such as the hippocampus, are also involved in the control of food intake. In this study, the effect of a high fat diet (HFD) alone or supplemented with these additives on brain neuropeptides and neurotransmitters was assessed in forty-three young pigs fed for 10 weeks with a control diet (T1), a high fat diet (HFD, T2), and HFD with vegetal protein supplemented with Bifidobacterium breve CECT8242 alone (T3) or in combination with omega-3 fatty acids (T4). A HFD provoked changes in regulatory neuropeptides and 3,4-dihydroxyphenylacetic acid (DOPAC) in the hypothalamus and alterations mostly in the dopaminergic system in the ventral hippocampus. Supplementation of the HFD with B. breve CECT8242, especially in combination with omega-3 fatty acids, was able to partially reverse the effects of HFD. Correlations between productive and neurochemical parameters supported these findings. These results confirm that pigs are an appropriate animal model alternative to rodents for the study of the effects of HFD on weight gain and obesity. Furthermore, they indicate the potential benefits of probiotics and omega-3 fatty acids on brain function.


2003 ◽  
Vol 90 (2) ◽  
pp. 329-336 ◽  
Author(s):  
Anja Schou Lindman ◽  
Hanne Müller ◽  
Ingebjørg Seljeflot ◽  
Hans Prydz ◽  
Marit Veierød ◽  
...  

Dietary fat influences plasma levels of coagulation factor VII (FVII) and serum phospholipids (PL). It is, however, unknown if the fat-mediated changes in FVII are linked to PL. The present study aimed to investigate the effects of dietary fat on fasting and postprandial levels of activated FVII (FVIIa), FVII coagulant activity (FVIIc), FVII protein (FVIIag) and choline-containing PL (PC). In a randomized single-blinded crossover-designed study a high-fat diet (HSAFA), a low-fat diet (LSAFA), both rich in saturated fatty acids, and a high-fat diet rich in unsaturated fatty acids (HUFA) were consumed for 3 weeks. Twenty-five healthy females, in which postprandial responses were studied in a subset of twelve, were included. The HSAFA diet resulted in higher levels of fasting FVIIa and PC compared with the LSAFA and the HUFA diets (all comparisonsP≤0·01). The fasting PC levels after the LSAFA diet were also higher than after the HUFA diet (P<0·001). Postprandial levels of FVIIa and PC were highest on the HSAFA diet and different from LSAFA and HUFA (all comparisonsP≤0·05). Postprandial FVIIa was higher on the HUFA compared with the LSAFA diet (P<0·03), whereas the HUFA diet resulted in lower postprandial levels of PC than the LSAFA diet (P<0·001). Significant correlations between fasting levels of PC and FVIIc were found on all diets, whereas FVIIag was correlated to PC on the HSAFA and HUFA diet. The present results indicate that dietary fat, both quality and quantity, influences fasting and postprandial levels of FVIIa and PC. Although significant associations between fasting FVII and PC levels were found, our results do not support the assumption that postprandial FVII activation is linked to serum PC.


2011 ◽  
Vol 49 (5) ◽  
pp. 1129-1140 ◽  
Author(s):  
Mohamed A. El-Moselhy ◽  
Ashraf Taye ◽  
Sara Shaaban Sharkawi ◽  
Suzan F.I. El-Sisi ◽  
Ahmed Fahmy Ahmed

2012 ◽  
Vol 51 (3) ◽  
pp. 163-169 ◽  
Author(s):  
Wataru Motomura ◽  
Takayuki Yoshizaki ◽  
Nobuhiko Takahashi ◽  
Shima Kumei ◽  
Yusuke Mizukami ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document