The large-scale geobotanical map of the 30th km zone around the Khmelnitskaya APS as the basis of monitoring

2002 ◽  
pp. 66-78
Author(s):  
Ja. P. Didukh ◽  
P. M. Ustimenko ◽  
Ju. R. Shelag-Sosonko ◽  
P. G. Pluta ◽  
I. A. Korotchenko

The complex cartography of the Khmelnitskaya APS 30-kilometer zone (the total area of 282.6 thousand ha) was carried out during the elaboration of project according to the MAGATE demands. The present geobotanical map of zone was created in the scale 1 : 100 000. The ecological-phytocoenotical (dominant) vegetation classification was taken as a basis of the map's legend. The legend includes 27 numbers and 6 variants, represented by the boreal forest (11.6 % of area), nemoral forests (8.4 %), meadows (2.4 %), hydrophyte communities (3.2 %), agro- and urbo-communities (61.9 %) and young forest plantations (4.4 %). The characteristic of prevailing community types is given. Influence of the economic activity on the vegetation cover is shown. The geobotanical map can be used for both further monitoring and management of the forest economy with the aim of increasing the ecosystems stability against the external influences.

2007 ◽  
Vol 20 (6) ◽  
pp. 981-992 ◽  
Author(s):  
Michael Notaro ◽  
Zhengyu Liu

Abstract The authors demonstrate that variability in vegetation cover can potentially influence oceanic variability through the atmospheric bridge. Experiments aimed at isolating the impact of variability in forest cover along the poleward side of the Asian boreal forest on North Pacific SSTs are performed using the fully coupled model, Fast Ocean Atmosphere Model–Lund Potsdam Jena (FOAM-LPJ), with dynamic atmosphere, ocean, and vegetation. The northern edge of the simulated Asian boreal forest is characterized by substantial variability in annual forest cover, with an east–west dipole pattern marking its first EOF mode. Simulations in which vegetation cover is allowed to vary over north/central Russia exhibit statistically significant greater SST variance over the Kuroshio Extension. Anomalously high forest cover over North Asia supports a lower surface albedo with higher temperatures and lower sea level pressure, leading to a reduction in cold advection into northern China and in turn a decrease in cold air transport into the Kuroshio Extension region. Variability in the large-scale circulation pattern is indirectly impacted by the aforementioned vegetation feedback, including the enhancement in upper-level jet wind variability along the north–south flanks of the East Asian jet stream.


2001 ◽  
pp. 99-106 ◽  
Author(s):  
Yu. N. Neshatayev

If one processes a huge amount of data when es­tabli­shing the vegetation classification, it appears necessary to use the uniform algorithms of analysis. Such goals as distinguishing the reliable community types (associations or other syntaxa) involve the operational reduction of either the species list, or (more seldom) the sample plot set. This is especially useful for the analysis of multi­specific communities of meadows, steppes, or another types of markedly continuous polydominant vegetation with «fuzzy» structure of the herb layer.


1995 ◽  
pp. 3-21
Author(s):  
S. S. Kholod

One of the most difficult tasks in large-scale vegetation mapping is the clarification of mechanisms of the internal integration of vegetation cover territorial units. Traditional way of searching such mechanisms is the study of ecological factors controlling the space heterogeneity of vegetation cover. In essence, this is autecological analysis of vegetation. We propose another way of searching the mechanisms of territorial integration of vegetation. It is connected with intracoenotic interrelation, in particular, with the changing role of edificator synusium in a community along the altitudinal gradient. This way of searching is illustrated in the model-plot in subarctic tundra of Central Chukotka. Our further suggestion concerns the way of depicting these mechanisms on large-scale vegetation map. As a model object we chose the catena, that is the landscape formation including all geomorphjc positions of a slope, joint by the process of moving the material down the slope. The process of peneplanation of a mountain system for a long geological time favours to the levelling the lower (accumulative) parts of slopes. The colonization of these parts of the slope by the vegetation variants, corresponding to the lowest part of catena is the result of peneplanation. Vegetation of this part of catena makes a certain biogeocoenotic work which is the levelling of the small infralandscape limits and of the boundaries in vegetation cover. This process we name as the continualization on catena. In this process the variants of vegetation in the lower part of catena are being broken into separate synusiums. This is the process of decumbation of layers described by V. B. Sochava. Up to the slope the edificator power of the shrub synusiums sharply decreases. Moss and herb synusium have "to seek" the habitats similar to those under the shrub canopy. The competition between the synusium arises resulting in arrangement of a certain spatial assemblage of vegetation cover elements. In such assemblage the position of each element is determined by both biotic (interrelation with other coenotic elements) and abiotic (presence of appropriate habitats) factors. Taking into account the biogeocoenotic character of the process of continualization on catena we name such spatial assemblage an exolutionary-biogeocoenotic series. The space within each evolutionary-biogeocoenotic series is divided by ecological barriers into some functional zones. In each of the such zones the struggle between synusiums has its individual expression and direction. In the start zone of catena (extensive pediment) the interrelations of synusiums and layers control the mutual spatial arrangement of these elements at the largest extent. Here, as a rule, there predominate edificator synusiums of low and dwarfshrubs. In the first order limit zone (the bend of pediment to the above part of the slope) one-species herb and moss synusiums, oftenly substituting each other in similar habitats, get prevalence. In the zone of active colonization of slope (denudation slope) the coenotic factor has the least role in the spatial distribution of the vegetation cover elements. In particular, phytocoenotic interactions take place only within separate microcoenoses of herbs, mosses and lichens. In the zone of the attenuation of continualization process (the upper most parts of slope, crests) phytocoenotic interactions are almost absent and the spatial distribution of vegetation cover elements depends exclusively on the abiotic factors. The principal scheme of the distribution of vegetation cover elements and the disposition of functional zones on catena are shown on block-diagram (fig. 1).


2009 ◽  
pp. 27-53
Author(s):  
A. Yu. Kudryavtsev

Diversity of plant communities in the nature reserve “Privolzhskaya Forest-Steppe”, Ostrovtsovsky area, is analyzed on the basis of the large-scale vegetation mapping data from 2000. The plant community classi­fication based on the Russian ecologic-phytocoenotic approach is carried out. 12 plant formations and 21 associations are distinguished according to dominant species and a combination of ecologic-phytocoenotic groups of species. A list of vegetation classification units as well as the characteristics of theshrub and woody communities are given in this paper.


2000 ◽  
pp. 50-61 ◽  
Author(s):  
S. V. Osipov ◽  
V. P. Verkholat

Two territories on the western coast of Peter the Great Bay were mapped in the large scale. The geobotanical mapping means revealing and displaying the essential regularities of vegetation cover. Both the spatial and temporal regularities of vegetation under natural and anthropogenic influences are well pronounced in the territory under consideration. The concept of the vegetation spatial unit (vegetation complexes) was applied as a basis for mapping. The maps and their legend were worked out as a system of vegetation combination types (vegetation combination is a spatial unit of the supracoenotic level). Such categories, as vegetation of tops and slopes, lowlands and river valleys, sea coasts reflect maximal contrasts in vegetation cover, so they are the highest level divisions of the map legend. Types of succession series and stages of series are developed for construction of the second and third levels of the legend. Communities, similar in ecotope, total species composition, saplings and some other characteristics, are referred to one type of series. 5 types of series have been distinguished: dry, fresh, moist, very moist, wet. The main factor of dynamics in considered territory is fire and the series are mainly pyrogeneous. Series are presented as sequences of vegetation stages. The vegetation stages for tops and slopes are: closed low forest — open low woodland — shrub thicket with saplings — meadow with saplings, for lowlands and river valleys they are: open low woodland — thicket of saplings — meadow or mire with saplings.


2003 ◽  
Vol 79 (1) ◽  
pp. 132-146 ◽  
Author(s):  
Dennis Yemshanov ◽  
Ajith H Perera

We reviewed the published knowledge on forest succession in the North American boreal biome for its applicability in modelling forest cover change over large extents. At broader scales, forest succession can be viewed as forest cover change over time. Quantitative case studies of forest succession in peer-reviewed literature are reliable sources of information about changes in forest canopy composition. We reviewed the following aspects of forest succession in literature: disturbances; pathways of post-disturbance forest cover change; timing of successional steps; probabilities of post-disturbance forest cover change, and effects of geographic location and ecological site conditions on forest cover change. The results from studies in the literature, which were mostly based on sample plot observations, appeared to be sufficient to describe boreal forest cover change as a generalized discrete-state transition process, with the discrete states denoted by tree species dominance. In this paper, we outline an approach for incorporating published knowledge on forest succession into stochastic simulation models of boreal forest cover change in a standardized manner. We found that the lack of details in the literature on long-term forest succession, particularly on the influence of pre-disturbance forest cover composition, may be limiting factors in parameterizing simulation models. We suggest that the simulation models based on published information can provide a good foundation as null models, which can be further calibrated as detailed quantitative information on forest cover change becomes available. Key words: probabilistic model, transition matrix, boreal biome, landscape ecology


2008 ◽  
Vol 80 (2) ◽  
pp. 397-408 ◽  
Author(s):  
David M. Lapola ◽  
Marcos D. Oyama ◽  
Carlos A. Nobre ◽  
Gilvan Sampaio

We developed a new world natural vegetation map at 1 degree horizontal resolution for use in global climate models. We used the Dorman and Sellers vegetation classification with inclusion of a new biome: tropical seasonal forest, which refers to both deciduous and semi-deciduous tropical forests. SSiB biogeophysical parameters values for this new biome type are presented. Under this new vegetation classification we obtained a consensus map between two global natural vegetation maps widely used in climate studies. We found that these two maps assign different biomes in ca. 1/3 of the continental grid points. To obtain a new global natural vegetation map, non-consensus areas were filled according to regional consensus based on more than 100 regional maps available on the internet. To minimize the risk of using poor quality information, the regional maps were obtained from reliable internet sources, and the filling procedure was based on the consensus among several regional maps obtained from independent sources. The new map was designed to reproduce accurately both the large-scale distribution of the main vegetation types (as it builds on two reliable global natural vegetation maps) and the regional details (as it is based on the consensus of regional maps).


2011 ◽  
Vol 41 (3) ◽  
pp. 501-508 ◽  
Author(s):  
Ambroise Lycke ◽  
Louis Imbeau ◽  
Pierre Drapeau

Partial cuts are increasingly proposed to maintain habitats for species negatively affected by clearcutting, even if their benefits on nonpasserine birds and large mammals are still poorly documented. Our main objective was to evaluate effects of commercial thinning (CT) on spruce grouse ( Falcipennis canadensis L.), a game bird of the boreal forest. Because this species is known to be associated with a dense vegetation cover, we hypothesized that habitat use would be lower in treated sites. In spring 2006, we evaluated site occupancy in 94 forest stands (50 CT and 44 uncut stands) in Quebec by visiting each on three occasions during the breeding season (March–May). Additionally, during the molting period (May–July), we used radiotelemetry to monitor habitat use by 19 males. As compared with uncut stands, results show that a lower proportion of CTs were used in spring (39% versus 60%, after accounting for detection). During the molting period, CTs were also used less than expected according to their availability. The significant reduction of lateral and vertical forest cover in CT may explain these results. We conclude that even if CT is perceived beneficial for wildlife, it does not completely fulfill the needs of species associated with dense understory vegetation, such as spruce grouse.


2006 ◽  
Vol 36 (3) ◽  
pp. 783-800 ◽  
Author(s):  
Carole Coursolle ◽  
Hank A Margolis ◽  
Alan G Barr ◽  
T Andrew Black ◽  
Brian D Amiro ◽  
...  

Net ecosystem productivity (NEP) during August 2003 was measured by using eddy covariance above 17 forest and 3 peatland sites along an east–west continental-scale transect in Canada. Measured sites included recently disturbed stands, young forest stands, intermediate-aged conifer stands, mature deciduous stands, mature conifer stands, fens, and an open shrub bog. Diurnal courses of NEP showed strong coherence within the different ecosystem categories. Recently disturbed sites showed the weakest diurnal cycle; and intermediate-aged conifers, the strongest. The western treed fen had a more pronounced diurnal pattern than the eastern shrub bog or the Saskatchewan patterned fen. All but three sites were clearly afternoon C sinks. Ecosystem respiration was highest for the young fire sites. The intermediate-aged conifer sites had the highest maximum NEP (NEPmax) and gross ecosystem productivity (GEPmax), attaining rates that would be consistent with the presence of a strong terrestrial C sink in regions where these types of forest are common. These results support the idea that large-scale C cycle modeling activities would benefit from information on the age-class distribution and disturbance types within larger grid cells. Light use efficiency followed a pattern similar to that of NEPmax and GEPmax. Four of the five recently disturbed sites and all three of the peatland sites had low water use efficiencies.


2020 ◽  
Vol 23 ◽  
Author(s):  
MELINA DE SOUZA LEITE ◽  
JOAQUIM ALVES DA SILVA JUNIOR ◽  
ADRIANE CALABONI ◽  
ALEXANDRE TOSHIRO IGARI

Abstract This study investigated how farm size, economic activity and social group are related to declared native vegetation cover in rural lands in the state of São Paulo, Brazil, evaluating implications to environmental public policies. We analyzed data from Rural Environmental Registry System of São Paulo (SICAR-SP). More than one third of the farms does not have declared native vegetation and half of them have up to 3% of native vegetation cover. Percentage of declared native vegetation cover tends to increase with farm size. However, only community lands and silviculture farms larger than 500 hectares showed most properties (more than 50%) with at least 20% of its area covered with native vegetation, as determined by the Brazilian Forest Act (federal law 12,651/2012). Our results suggest that, beyond property size, property social group and economic activity are also important aspects to be considered into public policy design aiming at environmental conservation in rural landscapes.


Sign in / Sign up

Export Citation Format

Share Document