scholarly journals Prediction of the effective reproduction number of COVID-19 in Greece. A machine learning approach using Google mobility data

2021 ◽  
Vol 1 (1) ◽  
pp. 1-21
Author(s):  
Athanasios Arvanitis ◽  
◽  
Irini Furxhi ◽  
Thomas Tasioulis ◽  
Konstantinos Karatzas ◽  
...  

This paper demonstrates how a short-term prediction of the effective reproduction number (Rt) of COVID-19 in regions of Greece is achieved based on online mobility data. Various machine learning methods are applied to predict Rt and attribute importance analysis is performed to reveal the most important variables that affect the accurate prediction of Rt. Work and Park categories are identified as the most important mobility features when compared to the other attributes, with values of 0.25 and 0.24, respectively. Our results are based on an ensemble of diverse Rt methodologies to provide non-precautious and non-indulgent predictions. Random Forest algorithm achieved the highest R2 (0.8 approximately), Pearson’s and Spearman’s correlation values close to 0.9, outperforming in all metrics the other models. The model demonstrates robust results and the methodology overall represents a promising approach towards COVID-19 outbreak prediction. This paper can help health-related authorities when deciding on non-nosocomial interventions to prevent the spread of COVID-19.

2021 ◽  
Author(s):  
Athanasios Arvanitis ◽  
Irini Furxhi ◽  
Thomas Tasioulis ◽  
Konstantinos Karatzas

This paper demonstrates how a short-term prediction of the effective reproduction number (Rt) of COVID-19 in regions of Greece is achieved based on online mobility data. Various machine learning methods are applied to predict Rt and attribute importance analysis is performed to reveal the most important variables that affect the accurate prediction of Rt. Our results are based on an ensemble of diverse Rt methodologies to provide non-precautious and non-indulgent predictions. The model demonstrates robust results and the methodology overall represents a promising approach towards COVID-19 outbreak prediction. This paper can help health related authorities when deciding non-nosocomial interventions to prevent the spread of COVID-19.


2016 ◽  
Vol 11 (4) ◽  
pp. 791-799 ◽  
Author(s):  
Rina Kagawa ◽  
Yoshimasa Kawazoe ◽  
Yusuke Ida ◽  
Emiko Shinohara ◽  
Katsuya Tanaka ◽  
...  

Background: Phenotyping is an automated technique that can be used to distinguish patients based on electronic health records. To improve the quality of medical care and advance type 2 diabetes mellitus (T2DM) research, the demand for T2DM phenotyping has been increasing. Some existing phenotyping algorithms are not sufficiently accurate for screening or identifying clinical research subjects. Objective: We propose a practical phenotyping framework using both expert knowledge and a machine learning approach to develop 2 phenotyping algorithms: one is for screening; the other is for identifying research subjects. Methods: We employ expert knowledge as rules to exclude obvious control patients and machine learning to increase accuracy for complicated patients. We developed phenotyping algorithms on the basis of our framework and performed binary classification to determine whether a patient has T2DM. To facilitate development of practical phenotyping algorithms, this study introduces new evaluation metrics: area under the precision-sensitivity curve (AUPS) with a high sensitivity and AUPS with a high positive predictive value. Results: The proposed phenotyping algorithms based on our framework show higher performance than baseline algorithms. Our proposed framework can be used to develop 2 types of phenotyping algorithms depending on the tuning approach: one for screening, the other for identifying research subjects. Conclusions: We develop a novel phenotyping framework that can be easily implemented on the basis of proper evaluation metrics, which are in accordance with users’ objectives. The phenotyping algorithms based on our framework are useful for extraction of T2DM patients in retrospective studies.


2019 ◽  
Vol 62 ◽  
pp. 15-19 ◽  
Author(s):  
Birgit Ludwig ◽  
Daniel König ◽  
Nestor D. Kapusta ◽  
Victor Blüml ◽  
Georg Dorffner ◽  
...  

Abstract Methods of suicide have received considerable attention in suicide research. The common approach to differentiate methods of suicide is the classification into “violent” versus “non-violent” method. Interestingly, since the proposition of this dichotomous differentiation, no further efforts have been made to question the validity of such a classification of suicides. This study aimed to challenge the traditional separation into “violent” and “non-violent” suicides by generating a cluster analysis with a data-driven, machine learning approach. In a retrospective analysis, data on all officially confirmed suicides (N = 77,894) in Austria between 1970 and 2016 were assessed. Based on a defined distance metric between distributions of suicides over age group and month of the year, a standard hierarchical clustering method was performed with the five most frequent suicide methods. In cluster analysis, poisoning emerged as distinct from all other methods – both in the entire sample as well as in the male subsample. Violent suicides could be further divided into sub-clusters: hanging, shooting, and drowning on the one hand and jumping on the other hand. In the female sample, two different clusters were revealed – hanging and drowning on the one hand and jumping, poisoning, and shooting on the other. Our data-driven results in this large epidemiological study confirmed the traditional dichotomization of suicide methods into “violent” and “non-violent” methods, but on closer inspection “violent methods” can be further divided into sub-clusters and a different cluster pattern could be identified for women, requiring further research to support these refined suicide phenotypes.


Author(s):  
Ranjan Raj Aryal ◽  
Ankit Bhattarai

Social media is one platform where people share their opinions and views on different topics, services, or behaviors that happen around them. Since the COVID19 pandemic that started at the end of 2019, it has been a topic on which people express their sentiments. Recently, the COVID19 vaccination programs have got a lot of responses. In this paper, we have proposed two models: one based on the machine learning approach: Naive Bayes & the other based on deep learning: LSTM, whose goal is to know the sentiment of Asian region tweets towards the vaccine through sentiment analysis. The data were extracted with the help of Twitter API from March 23, 2021, till April 2, 2021. The extraction approach contains keywords with geocoding of some of the Asian countries, especially Nepal, India and Singapore. After collecting data, some preprocessing such as removing numbers, non-English & stop words, removing special characters, and hyperlinks were done. The polarity of tweets was assigned using the Text blob library. The tweets were classified into one of the three: positive, negative, or neutral. Now the data were preprocessed with the splitting of tweets into training & testing sets. Both the models were trained & tested using 10767 unique tweets. This experiment shows that a number of people in these three countries (Nepal, India and Singapore) have positive sentiment towards the vaccine and are taking the first dose of Covid19 vaccine. At last, the accuracy of the LSTM model was found to be 7% greater than that of the Naive Bayes-based model.


10.2196/20335 ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. e20335
Author(s):  
Junko Kurita ◽  
Yoshiyuki Sugishita ◽  
Tamie Sugawara ◽  
Yasushi Ohkusa

Background In Japan, as a countermeasure against the COVID-19 outbreak, both the national and local governments issued voluntary restrictions against going out from residences at the end of March 2020 in preference to the lockdowns instituted in European and North American countries. The effect of such measures can be studied with mobility data, such as data which is generated by counting the number of requests made to Apple Maps for directions in select countries/regions, sub-regions, and cities. Objective We investigate the associations of mobility data provided by Apple Inc and an estimate an an effective reproduction number R(t). Methods We regressed R(t) on a polynomial function of daily Apple data, estimated using the whole period, and analyzed subperiods delimited by March 10, 2020. Results In the estimation results, R(t) was 1.72 when voluntary restrictions against going out ceased and mobility reverted to a normal level. However, the critical level of reducing R(t) to <1 was obtained at 89.3% of normal mobility. Conclusions We demonstrated that Apple mobility data are useful for short-term prediction of R(t). The results indicate that the number of trips should decrease by 10% until herd immunity is achieved and that higher voluntary restrictions against going out might not be necessary for avoiding a re-emergence of the outbreak.


Human body prioritizes the heart as the second most important organ after the brain. Any disruption in the heart ultimately leads to disruption of the entire body. Being the members of modern era, enormous changes are happening to us on a daily basis that impact our lives in one way or the other. A major disease among top five fatal diseases includes the heart disease which has been consuming lives worldwide. Therefore, the prediction of this disease is of prime importance as it will enable one to take a proper and needful approach at a proper time. Data mining and machine learning are taking out and refining of useful information from a massive amount of data. It is a basic and primary process in defining and discovering useful information and hidden patterns from databases. The flexibility and adaptability of optimization algorithms find its use in dealing with complex non -linear problems. Machine Learning techniques find its use in medical sciences in solving real health-related issues by early prediction and treatment of various diseases. In this paper, six machine learning algorithms are used and then compared accordingly based on the evaluation of performance. Among all classifiers, decision tree outperforms over the other algorithms with a testing accuracy of 97.29%.


2021 ◽  
Vol 2115 (1) ◽  
pp. 012042
Author(s):  
S Premanand ◽  
Sathiya Narayanan

Abstract The primary objective of this particular paper is to classify the health-related data without feature extraction in Machine Learning, which hinder the performance and reliability. The assumption of our work will be like, can we able to get better result for health-related data with the help of Tree based Machine Learning algorithms without extracting features like in Deep Learning. This study performs better classification with Tree based Machine Learning approach for the health-related medical data. After doing pre-processing, without feature extraction, i.e., from raw data signal with the help of Machine Learning algorithms we are able to get better results. The presented paper which has better result even when compared to some of the advanced Deep Learning architecture models. The results demonstrate that overall classification accuracy of Random Forest, XGBoost, LightGBM and CatBoost, Tree-based Machine Learning algorithms for normal and abnormal condition of the datasets was found to be 97.88%, 98.23%, 98.03% and 95.57% respectively.


2020 ◽  
pp. 016555152091765 ◽  
Author(s):  
Ibrahim Aljarah ◽  
Maria Habib ◽  
Neveen Hijazi ◽  
Hossam Faris ◽  
Raneem Qaddoura ◽  
...  

Nowadays, cyber hate speech is increasingly growing, which forms a serious problem worldwide by threatening the cohesion of civil societies. Hate speech relates to using expressions or phrases that are violent, offensive or insulting for a person or a minority of people. In particular, in the Arab region, the number of Arab social media users is growing rapidly, which is accompanied with high increasing rate of cyber hate speech. This drew our attention to aspire healthy online environments that are free of hatred and discrimination. Therefore, this article aims to detect cyber hate speech based on Arabic context over Twitter platform, by applying Natural Language Processing (NLP) techniques, and machine learning methods. The article considers a set of tweets related to racism, journalism, sports orientation, terrorism and Islam. Several types of features and emotions are extracted and arranged in 15 different combinations of data. The processed dataset is experimented using Support Vector Machine (SVM), Naive Bayes (NB), Decision Tree (DT) and Random Forest (RF), in which RF with the feature set of Term Frequency-Inverse Document Frequency (TF-IDF) and profile-related features achieves the best results. Furthermore, a feature importance analysis is conducted based on RF classifier in order to quantify the predictive ability of features in regard to the hate class.


2019 ◽  
Vol 25 (2) ◽  
pp. 145-167 ◽  
Author(s):  
Nicholas Guttenberg ◽  
Nathaniel Virgo ◽  
Alexandra Penn

Natural evolution gives the impression of leading to an open-ended process of increasing diversity and complexity. If our goal is to produce such open-endedness artificially, this suggests an approach driven by evolutionary metaphor. On the other hand, techniques from machine learning and artificial intelligence are often considered too narrow to provide the sort of exploratory dynamics associated with evolution. In this article, we hope to bridge that gap by reviewing common barriers to open-endedness in the evolution-inspired approach and how they are dealt with in the evolutionary case—collapse of diversity, saturation of complexity, and failure to form new kinds of individuality. We then show how these problems map onto similar ones in the machine learning approach, and discuss how the same insights and solutions that alleviated those barriers in evolutionary approaches can be ported over. At the same time, the form these issues take in the machine learning formulation suggests new ways to analyze and resolve barriers to open-endedness. Ultimately, we hope to inspire researchers to be able to interchangeably use evolutionary and gradient-descent-based machine learning methods to approach the design and creation of open-ended systems.


Sign in / Sign up

Export Citation Format

Share Document