Phytochemical analysis and antibiotic-modulating activity of Cocos nucifera, Glycine max and Musa sapientum methanol extracts against multidrug resistant Gram-negative bacteria

2021 ◽  
Vol 4 (2) ◽  
pp. 1-12
Author(s):  
Carine M.N. Ngaffo ◽  
Simplice B. Tankeo ◽  
Michel-Gael F. Guefack ◽  
Paul Nayim ◽  
Brice E.N. Wamba ◽  
...  

Background: The rapid emergence of multidrug resistant (MDR) bacteria is occurring worldwide, endangering the efficacy of antibiotics, which have transformed medicine and saved millions of lives. Antibiotic-resistant infections are already widespread in the Sub-Saharan Africa and across the globe. To extend the search for new and more efficient antimicrobial drugs from natural sources, this work has been carried out to study the phytochemical composition and the antibacterial activities of some Cameroonian dietary plants (Cocos nucifera, Glycine max and Musa sapientum) against several MDR Gram-negative strains including Escherichia coli, Enterobacter aerogenes, Providencia stuartii, Klebsiella pneumoniae, Pseudomonas aeruginosa species expressing efflux pumps. Methods: Phytochemical screening of plant extracts was performed using qualitative standard methods and the antimicrobial assays of these extracts alone and in combination with antibiotics were done using serial 96-wells microplate dilution essays. Results: Each plant extract contained at least three mean classes of secondary metabolites. Glycine max, epicarps, leaves and bark of C. nucifera as well as mesocarps of M. sapientum contained each alkaloids, polyphenols, flavonoids, and triterpenes. Moreover, steroids were also found in G. max, steroids and saponins in epicarps and saponins in bark of C. nucifera. Meanwhile epicarps from M. sapientum contained only polyphenols, flavonoids and saponins. Antibacterial assays showed that different parts of C. nucifera were more active than other extracts. Their minimal inhibitory concentrations (MICs) varied from 128 to 2048 µg/mL. The bark part presented the highest antibacterial potential inhibiting the growth of 90% of strains with significant activity (100≤MIC≤512 µg/mL) against 50% of them (three E. coli, four E. aerogenes and three K. pneumoniae). It showed bactericidal effects (MBC/MIC≤4) on 45% of the same bacterial species. It was followed by epicarps and leaves parts which exhibited an inhibitory power against 75% and 60% of bacteria with significant activity on 40% and 20% of them respectively. They also showed bactericidal effects on E. coli ATCC8739 for epicarps extract and E. coli ATCC8739 and P. stuartii NEA16 for leaves extract. Extracts from G. max were less active and those from mesocarps and epicarps of M. sapientum did not showed any activity on all studied bacteria. Bark and epicarps extracts of C. nucifera potentiated the activities of all used antibiotics against at least 70% of bacteria while leaves extract exhibited this effect improving the activities of 67% of antibiotics with improvement activity factors (IAF) ranging from 2 to 256 suggesting that they contain bioactive compounds which could be considered as efflux pumps inhibitors. Extracts from G. max, epicarps and mesocarps of M. sapientum enhanced the inhibitory potential of 56%, 34% and 23% of antibiotics respectively against at least 70% of studied bacteria. These increases of activities also characterize synergistic effects between antibiotics and bioactive compounds of plants. Conclusion: The findings of this work suggest that infections by resistant bacteria can be treated using different parts of C. nucifera as an alternative to commonly used antibiotics.

2020 ◽  
Vol 4 (1) ◽  
pp. 1-15
Author(s):  
Michel-Gael F. Guefack ◽  
Simplice B. Tankeo ◽  
Carine M.N. Ngaffo ◽  
Paul Nayim ◽  
Brice E.N. Wamba ◽  
...  

Abstract Background: In recent years, drug resistance to human pathogenic bacteria has been commonly reported from all over the world. As antimicrobial activities of most medicinal plants and antibiotics have been already explored, it is more important to make investigations on animal species mainly invertebrates which could constitute an efficient source of antimicrobial molecules. This work was aimed at contributing to the fight against microbial resistance through the study of antibacterial potential of three animal species (Helix aspersa, Bitis arietans, Aristaeomorpha foliacea) on several multidrug-resistant (MDR) Gram-negative strains overexpressing efflux pumps including Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa. Methods: The microdilution technique was used to evaluate the antibacterial activities of the tested samples by determining their minimal inhibitory concentrations (MICs), as well as the effect of their combination with antibiotics. Studies on the mechanisms of action of the most active sample, dried Bitis arietans extract, was carried out using standard methods for evaluating the effects of this extract on bacterial H+-ATPases-mediated proton pumps and on bacterial growth kinetics. In this latter case, the optical density was read spectrophotometrically. Results: Zoochemical screening indicated the presence of protein constituents and alkaloids and the absence of other metabolites in all tested extracts. Dried B. arietans showed the best antibacterial activity by inhibiting the growth of 90% of studied bacterial strains with MICs ranging from 128 to 2048 μg/ml. Moreover, this extract presented a significant activity (100≤MIC≤512 µg/ml) against 35% of bacteria that are E. coli (ATCC8739, AG100ATet, MC4100), E. aerogenes EA27, K. pneumoniae ATCC11296, P. aeruginosa (PA01, PA124) and a moderate activity (512<MIC≤2048 µg/ml) against 55% of studied bacteria. It was followed by fresh B. arietans which inhibited the growth of 65% of bacteria with significant activity on three bacteria (E. coli ATCC8739, E. aerogenes ATCC13048 and K. pneumoniae ATCC11296. These two extracts showed bactericidal effects on many strains. The other extracts samples selectively exhibited an antibacterial activity against less than 40% of strains. All samples potentiated the activity of at least 56% of used antibiotics against at least 70% of studied bacterial strains. B. arietans extracts at MIC/2 and MIC/4 mostly improved the activities of more than 78% of antibiotics on at least 70% of bacteria with improvement activity factors (IAF) ranging from 2 – 128 suggesting that this animal contains bioactive compounds which could act as efflux pumps inhibitors. Bacterial growth kinetic study showed that when treated with dried B. arietans extract (the most active sample) at different concentrations MIC/2, MIC and 2xMIC, the growth of tested bacteria (E. coli ATCC8739) decreased respectively when the concentrations increased. Furthermore, this extract inhibited the H+-ATPase-mediated proton pumps of this bacterium increasing the pH values. Conclusion: Results obtained in the present work provide interesting data for the use of dried B. arietans extract and invertebrates in general in the traditional therapy for the treatment of bacterial infections involving multidrug-resistant phenotypes. Keywords: Gram-negative bacteria; multidrug resistance; efflux pumps; infectious diseases; animal species; secondary metabolites.


2020 ◽  
Vol 4 (1) ◽  
pp. 1-14
Author(s):  
Carine M.N. Ngaffo ◽  
Simplice B. Tankeo ◽  
Michel-Gael F. Guefack ◽  
Brice E. N. Wamba ◽  
Paul Nayim ◽  
...  

Abstract Background: Bacterial infections involving the multidrug resistant (MDR) strains are among the top leading causes of death throughout the world. Healthcare system across the globe has been suffering from an extra-ordinary burden in terms of looking for the new and more potent antimicrobial compounds. The aim of the present study was to determine the antibacterial activity of some Cameroonian edible plants (Garcinia lucida bark, Phoenix dactylifera pericarps, Theobroma cacao pod, Solanum macrocarpon leaves and Termitomyces titanicus whole plant) and their antibiotics-potentiation effects against some MDR Gram-negative bacteria phenotypes expressing efflux pumps (Escherichia coli, Enterobacter aerogenes, Klebsiella pneumoniae, Pseudomonas aeruginosa and Providencia stuartii strains). Methods: The antibacterial activities of plant extract alone and in combination with usual antibiotics were carried out using the micro-dilution method. The effects of the most active plant extract (Garcinia lucida bark) on H+-ATPase-mediated proton pumps and on bacterial growth kinetic were performed using experimental protocols, while qualitative reference methods were used to highligh the major groups of secondary metabolites present in the extracts. Results: Qualitative phytochemical screening of plant extracts indicated that all analysed secondary metabolites were present in Theobroma cacao and Termitomyces titanicus while one (saponins) of them was absent in Garcinia lucida and Solanum macrocarpon. Only three of them (polyphenols, flavonoids and saponins) were detected in Phoenix dactylifera. Antibacterial essays showed that G. lucida was the most active plant as it inhibited the growth of all studied bacteria with strong activity (MIC<100 µg/mL) against E. coli ATCC8739, significant activity (100≤MIC≤512 µg/mL) against 80% of bacteria and moderate activity (512<MIC≤2048 µg/mL) against E. coli AG100A and E. aerogenes (EA289 and CM64). It was followed by T. cacao and S. macrocarpon extracts which exhibited an antibacterial potential against 95% and 80% of bacterial strains, respectively. These three extracts exhibited a bactericidal effect on a few bacteria. Extracts from T. titanicus and P. dactylifera were less active as they moderately (512<MIC≤2048 µg/mL) inhibited the growth of 35% and 10% of bacteria. All extracts selectively potentiated the activities of all antibiotics with improvement activity factors (IAF) ranging from 2 to 256. G. lucida, T. cacao and S. macrocarpon potentiated the activities of 100%, 89% and 67% of antibiotics respectively against more than 70%, suggesting that they contain bioactive compounds which could be considered as efflux pumps inhibitors. Whereas T. titanicus and P. dactylifera improved the activities of almost 40% and 20% of antibiotics, respectively. This increase of activities also characterizes synergistic effects between antibiotics and these bioactive compounds. G. lucida extract at all tested concentrations, strongly inhibited the growth of bacterial strain E. coli ATCC8739 and exhibited an inhibitory effect on this bacterial H+-ATPase-mediated proton pumps increasing the pH of the medium. Conclusion: The overall results indicated that food plants among which G. lucida, T. cacao and S. macrocarpon could have a benefit interest in combatting resistant types of bacteria. Keywords: Food plants; infectious diseases; MDR bacteria; efflux pumps; antibiotics; secondary metabolites.


2018 ◽  
Vol 5 (suppl_1) ◽  
pp. S421-S422 ◽  
Author(s):  
Kenneth V I Rolston ◽  
Bahgat Gerges ◽  
Issam Raad ◽  
Samuel L Aitken ◽  
Ruth Reitzel ◽  
...  

Abstract Background Gram-negative bacilli (GNB) are now the predominant cause of bacterial infection in cancer patients (CP). Many GNB are problematic because they have become resistant to commonly used antibiotics. Cefiderocol (CFDC), a novel siderophore cephalosporin, is active against a wide spectrum of GNB. We evaluated its in vitro activity and that of eleven comparator agents against GNB isolated from CP. Methods A total of 341 recent GNB blood isolates from CP were tested using CLSI approved methods for MIC determination by broth microdilution. Comparator agents were amikacin (A), aztreonam (AZ), ceftazidime (CZ), ceftazidime/avibactam (CAV), cefepime (CEF), ciprofloxacin (CIP), colistin (CL), meropenem (MR), ceftolozane/tazobactam (C/T), tigecycline (TG), and trimethoprim/sulfamethoxazole (T/S). Results CFDC MIC90s as mg/L were: S. maltophilia [50 isolates] 0.25, E. coli (ESBL−) [50 isolates] 0.5, E. coli (ESBL+) [51 isolates] 2.0, K. pneumoniae (ESBL− and +) [60 isolates] 0.5; K. pneumoniae (CRE) [22 isolates] 2.0; P. aeruginosa (MDR) [32 isolates] 1.0; E. cloacae [27 isolates] 4.0; Achromobacter spp. [15 isolates] 0.12. CFDC inhibited P. agglomerans, Burkholderia spp., Sphingomonas spp., Ochrobactrum spp. at ≤1 mg/L [23 total isolates] and Elizabethkingia spp. and R. radiobacter at ≤8 mg/L [11 total isolates]. Among comparator agents, only T/S had consistent activity against S. maltophilia. For E. coli (ESBL− and +) MR, TG, CAV, CL were most active. For K. pneumoniae (ESBL–and +) MR, CAV were most active. For K. pneumoniae (CRE) and P. aeruginosa (MDR), none of the comparators had significant activity. For E. cloacae, MR, A, CAV, TG were most active. Among the uncommon organisms, MR and TG had the greatest activity. Conclusion Although susceptibility breakpoints have yet to be determined, CFDC has significant activity (≤4 mg/L) against most problematic Gram-negative organisms causing infections in CP based on available pharmacokinetic/pharmacodynamic data. In particular, its activity against S. maltophilia was superior to the comparators. Also, it was the most active agent against P. aeruginosa (MDR) and K. pneumoniae (CRE). Based on our results, CFDC warrants clinical evaluation for the treatment of blood stream infections caused by GNB in CP. Disclosures K. V. I. Rolston, Merck: Investigator, Research grant; JMI Laboratories: Investigator, Research grant; Shionogi (Japan): Investigator, Research grant. B. Gerges, Shionogi: Collaborator, Research support. S. L. Aitken, Shionogi: Scientific Advisor, Consulting fee; Merck: Scientific Advisor, Consulting fee; Medicines Co: Scientific Advisor, Consulting fee; Achaogen: Scientific Advisor, Consulting fee; Zavante: Scientific Advisor, Consulting fee; R. Prince, Shionogi: Investigator, Research support. Merck: Investigator, Research support.


Author(s):  
Amita Shobha Rao ◽  
Shobha Kl ◽  
Prathibha Md’almeida ◽  
Kiranmai S Rai

  Objective: Infections caused by Gram-negative bacteria are important causes of morbidity and mortality. Extracts of plants and herbs such as Clitorea ternatea are used as diuretic. This work attempts to find out antimicrobial activity of aqueous and alcoholic extract of C. ternatea roots against Pseudomonas aeruginosa (ATCC 27853), Escherichia coli (ATCC 25922), clinical strains of Klebsiella pneumoniae, and Candida albicans.Methods: The agar well-diffusion method was done using Mueller Hinton agar and Sabouraud’s dextrose agar. The microorganism grown in peptone water was inoculated into culture medium. 4 mm diameter well punched into the agar was filled with 20 μl of aqueous and alcoholic root extracts C. ternatea extracts in various concentrations (100-25 μg/ml). The plates were incubated and antimicrobial activity was evaluated.Results: Aqueous root extract of C. ternatea with the concentration of 100 μg/ml showed zone of inhibition against E. coli (ATCC 25922) 18 mm, P. aeruginosa (ATCC 27853) 14 mm, multidrug resistant strain of K. pneumoniae 15 mm. Alcoholic extract of C. ternatea with the concentration of 100 μg/ml showed zone of inhibition of 35 mm against E. coli (ATCC 25922), P. aeruginosa (ATCC 27853) 22 mm, and multidrug resistant strain of K. pneumoniae 28 mm. C. albicanswas resistant to both extract of C. ternatea root. Conclusions: Alcoholic extract of C. ternatea is a better antibacterial agent against multidrug resistant Klebsiella species and other Gram-negative pathogens. Further, studies are required to identify active substances from the alcoholic extracts of C. ternatea for treating infections.


Microbiology ◽  
2011 ◽  
Vol 157 (2) ◽  
pp. 566-571 ◽  
Author(s):  
Abdallah Mahamoud ◽  
Jacqueline Chevalier ◽  
Milad Baitiche ◽  
Elissavet Adam ◽  
Jean-Marie Pagès

To date, various bacterial drug efflux pump inhibitors (EPIs) have been described. They exhibit variability in their activity spectrum with respect to antibiotic structural class and bacterial species. Among the various 4-alkylaminoquinazoline derivatives synthesized and studied in this work, one molecule, 1167, increased the susceptibility of important human-pathogenic, resistant, Gram-negative bacteria towards different antibiotic classes. This 4-(3-morpholinopropylamino)-quinazoline induced an increase in the activity of chloramphenicol, nalidixic acid, norfloxacin and sparfloxacin, which are substrates of the AcrAB-TolC and MexAB-OprM efflux pumps that act in these multidrug-resistant isolates. In addition, 1167 increased the intracellular concentration of chloramphenicol in efflux pump-overproducing strains. The rate of restoration depended on the structure of the antibiotic, suggesting that different sites in the efflux pumps may be involved. A molecule exhibiting a morpholine functional group and a propyl extension of the side chain was more active.


mBio ◽  
2018 ◽  
Vol 9 (4) ◽  
Author(s):  
Yingbo Shen ◽  
Zuowei Wu ◽  
Yang Wang ◽  
Rong Zhang ◽  
Hong-Wei Zhou ◽  
...  

ABSTRACTThe recent emergence of a transferable colistin resistance mechanism, MCR-1, has gained global attention because of its threat to clinical treatment of infections caused by multidrug-resistant Gram-negative bacteria. However, the possible transmission route ofmcr-1amongEnterobacteriaceaespecies in clinical settings is largely unknown. Here, we present a comprehensive genomic analysis ofEscherichia coliisolates collected in a hospital in Hangzhou, China. We found thatmcr-1-carrying isolates from clinical infections and feces of inpatients and healthy volunteers were genetically diverse and were not closely related phylogenetically, suggesting that clonal expansion is not involved in the spread ofmcr-1. Themcr-1gene was found on either chromosomes or plasmids, but in most of theE. coliisolates,mcr-1was carried on plasmids. The genetic context of the plasmids showed considerable diversity as evidenced by the different functional insertion sequence (IS) elements, toxin-antitoxin (TA) systems, heavy metal resistance determinants, and Rep proteins of broad-host-range plasmids. Additionally, the genomic analysis revealed nosocomial transmission ofmcr-1and the coexistence ofmcr-1with other genes encoding β-lactamases and fluoroquinolone resistance in theE. coliisolates. These findings indicate thatmcr-1is heterogeneously disseminated in both commensal and pathogenic strains ofE. coli, suggest the high flexibility of this gene in its association with diverse genetic backgrounds of the hosts, and provide new insights into the genome epidemiology ofmcr-1among hospital-associatedE. colistrains.IMPORTANCEColistin represents one of the very few available drugs for treating infections caused by extensively multidrug-resistant Gram-negative bacteria. The recently emergentmcr-1colistin resistance gene threatens the clinical utility of colistin and has gained global attention. Howmcr-1spreads in hospital settings remains unknown and was investigated by whole-genome sequencing ofmcr-1-carryingEscherichia coliin this study. The findings revealed extraordinary flexibility ofmcr-1in its spread among genetically diverseE. colihosts and plasmids, nosocomial transmission ofmcr-1-carryingE. coli, and the continuous emergence of novel Inc types of plasmids carryingmcr-1and newmcr-1variants. Additionally,mcr-1was found to be frequently associated with other genes encoding β-lactams and fluoroquinolone resistance. These findings provide important information on the transmission and epidemiology ofmcr-1and are of significant public health importance as the information is expected to facilitate the control of this significant antibiotic resistance threat.


Author(s):  
Yi-Hsuan Lee ◽  
Chao-Min Wang ◽  
Po-Yu Liu ◽  
Ching-Chang Cheng ◽  
Zong-Yen Wu ◽  
...  

Essential oils from the dried spikes ofNepeta tenuifolia(Benth) are obtained by steam distillation. Pulegone was identified as the main component in the spikes ofN. tenuifoliathrough analysis, with greater than 85% purity obtained in this study. The essential oils are extremely active against all Gram-positive and some Gram-negative reference bacteria, particularlySalmonella enterica,Citrobacter freundii, andEscherichia coli. The minimum inhibitory concentration was found to be between 0.08 and 0.78% (againstS. enterica), 0.39 and 0.78% (againstC. freundii), and 0.097 and 0.39% (againstE. coli), whereas the minimum bactericidal concentration varied in range from 0.097% to 1.04%. In general, the essential oils show a strong inhibitory action against all tested reference strains and clinical isolates. However, the antibacterial activity of EOs against bothPseudomonas aeruginosareference strains and clinical isolates was relatively lower than other Gram-negative pathogens. The essential oils ofN. tenuifoliaalso displayed bactericidal activities (MBC/MIC < 4) in this study. These findings reflect the bactericidal activity of the essential oils against a wide range of multidrug-resistant clinical pathogens in an in vitro study. In addition, we propose the fragmentation pathways of pulegone and its derivatives by LC-ESI-MS/MS in this study.


2016 ◽  
Vol 60 (7) ◽  
pp. 4346-4350 ◽  
Author(s):  
Laura J. Rojas ◽  
Meredith S. Wright ◽  
Elsa De La Cadena ◽  
Gabriel Motoa ◽  
Kristine M. Hujer ◽  
...  

ABSTRACTWe report complete genome sequences of fourblaNDM-1-harboring Gram-negative multidrug-resistant (MDR) isolates from Colombia. TheblaNDM-1genes were located on 193-kb Inc FIA, 178-kb Inc A/C2, and 47-kb (unknown Inc type) plasmids. Multilocus sequence typing (MLST) revealed that these isolates belong to sequence type 10 (ST10) (Escherichia coli), ST392 (Klebsiella pneumoniae), and ST322 and ST464 (Acinetobacter baumanniiandAcinetobacter nosocomialis, respectively). Our analysis identified that the Inc A/C2 plasmid inE. colicontained a novel complex transposon (Tn125and Tn5393with three copies ofblaNDM-1) and a recombination “hot spot” for the acquisition of new resistance determinants.


2013 ◽  
Vol 58 (2) ◽  
pp. 722-733 ◽  
Author(s):  
Timothy J. Opperman ◽  
Steven M. Kwasny ◽  
Hong-Suk Kim ◽  
Son T. Nguyen ◽  
Chad Houseweart ◽  
...  

ABSTRACTMembers of the resistance-nodulation-division (RND) family of efflux pumps, such as AcrAB-TolC ofEscherichia coli, play major roles in multidrug resistance (MDR) in Gram-negative bacteria. A strategy for combating MDR is to develop efflux pump inhibitors (EPIs) for use in combination with an antibacterial agent. Here, we describe MBX2319, a novel pyranopyridine EPI with potent activity against RND efflux pumps of theEnterobacteriaceae. MBX2319 decreased the MICs of ciprofloxacin (CIP), levofloxacin, and piperacillin versusE. coliAB1157 by 2-, 4-, and 8-fold, respectively, but did not exhibit antibacterial activity alone and was not active against AcrAB-TolC-deficient strains. MBX2319 (3.13 μM) in combination with 0.016 μg/ml CIP (minimally bactericidal) decreased the viability (CFU/ml) ofE. coliAB1157 by 10,000-fold after 4 h of exposure, in comparison with 0.016 μg/ml CIP alone. In contrast, phenyl-arginine-β-naphthylamide (PAβN), a known EPI, did not increase the bactericidal activity of 0.016 μg/ml CIP at concentrations as high as 100 μM. MBX2319 increased intracellular accumulation of the fluorescent dye Hoechst 33342 in wild-type but not AcrAB-TolC-deficient strains and did not perturb the transmembrane proton gradient. MBX2319 was broadly active againstEnterobacteriaceaespecies andPseudomonas aeruginosa. MBX2319 is a potent EPI with possible utility as an adjunctive therapeutic agent for the treatment of infections caused by Gram-negative pathogens.


Sign in / Sign up

Export Citation Format

Share Document